MXG Vector Signal Generator

N5186A MXG Vector Signal Generator

This manual provides documentation for the N5186A running on the Linux operating system and X-Series Signal Analyzer running on the Windows operating system.

Notices

© Keysight Technologies, Inc. 2023

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws.

Trademark Acknowledgments

Bluetooth and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc., U.S.A. and licensed to Keysight Technologies, Inc.

Manual Part Number

N5186-90003

Edition

Edition 1, February 2025 Supersedes: October 2023

Published by: Keysight Technologies 1400 Fountaingrove Parkway Santa Rosa, CA 95403

Warranty

THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED "AS IS," AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY INFORMATION

CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

U.S. Government Rights

The Software is "commercial

computer software." as defined by Federal Acquisition Regulation ("FAR") 2.101. Pursuant to FAR 12.212 and 27.405-3 and Department of Defense FAR Supplement ("DFARS") 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at http://www.keysight.com/find/swe ula. The license set forth in the EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or

commercial computer software documentation. No additional government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about this product, including instrument software upgrades, application information, and product information, browse to the following URL:

https://www.keysight.com/us/en/product/N5186A/N5186A.html

Information on preventing instrument damage can be found at:

http://keysight.com/find/PreventingInstrumentRepair

Is your product software up-to-date?

Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements. To search for software updates for your product, go to the Keysight Technical Support website at:

http://www.keysight.com/find/techsupport

1. Basic Measurements Setting Up Triggers on the Signal Analyzer..... 10 Creating a Continuous Waveform (CW)......11 2. Corrections 3. 5G New Radio (NR) Measurements 5G Waveform, EVM, and ACP Analysis96 4. Other X-Series Signal Analyzer Measurements Using Real-time Spectrogram Streaming (Option RRT) for N9032B and N9042B 129 5. Custom Modulation Measurements Using PathWave E7608APPC to Create a Waveform File then Automatically Configure the

Setup Auto Configure Analyzer	153
Using the N5186A MXG as an Embedded Reflectometer	156
Test Setup	156
Configure the Test Setup	162

Measurement Guide

1 Basic Measurements

- "Equipment Setup" on page 9
- "Setting Up Triggers on the Signal Analyzer" on page 10
- "Making Measurements" on page 11
 - "Creating a Continuous Waveform (CW)" on page 11
 - "Setting Up Amplitude Modulation" on page 16
 - "Setting Up Frequency Modulation" on page 21
 - "Setting Up Phase Modulation" on page 25
 - "Setting Up a Multitone Signal" on page 29
 - "Setting Up Waveform File Vector Modulation" on page 33
 - "Using Multifunction Generator Option 303" on page 41

Overview

Keysight's N5186A MXG is optimized to be your ideal signal generator with the outstanding performance you desire, all in one easy-to-use box capable of signal generation up to 8.5 GHz with 960 MHz of modulation bandwidth per channel.

The measurement examples use an X-Series Signal Analyzer to view the results. For information on using the Signal Analyzer multi-touch user interface, refer to the Online Help.

CAUTION

Please refer to the MXG data sheet and signal analyzer data sheet to ensure your measurement setup has adequate power.

https://www.keysight.com/us/en/product/N5186A/N5186A.html

NOTE

The software versions used in this measurement guide are:

- MXG: A.13.01

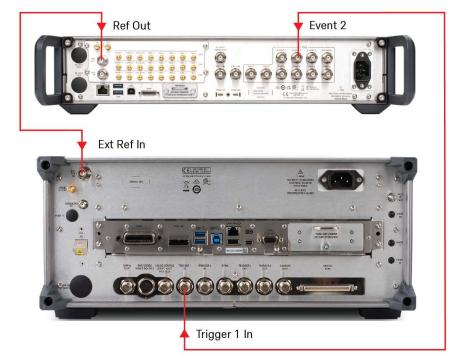
Signal Analyzer/N9063EM0E: Version 2021 A.31.xx or later

- 89601 VSA: Version 2019

Equipment Setup

- N5186A front panel RF 1 Out to N9032B front panel RF In
- N5186A rear panel Event 2 to N9032B rear panel Trig 1 In
- N5186A rear panel Ref Out to N9032B rear panel Ext Ref In

N5186A (front panel)



X-Series Signal Analyzer (front panel)

N9042B, N9041B, N9040B, N9032B, N9030B, or N9021B

N5186A (rear panel)

X-Series Signal Analyzer (rear panel)

N9042B, N9041B, N9040B, N9032B, N9030B, or N9021B

Setting Up Triggers on the Signal Analyzer

1. From the Signal Analyzer Menu Panel (on the top right of the display), select Mode/Meas > Spectrum Analyzer mode.

NOTE

If accessing the instrument via a Remote Desktop connection, select the Screen tab (at the top of the display) to open the Mode/Measurement/View Selector window.

- 2. Select Mode Preset to set Spectrum Analyzer mode to a known state.
- **3.** From the dropdown on the top right, select **Trigger** and set Trigger Source to **Free Run**.

Making Measurements

Creating a Continuous Waveform (CW)

This procedure will demonstrate the amplitude and frequency accuracy of the MXG.

NOTE


Ensure the equipment and triggers are properly configured. Refer to "Equipment Setup" on page 9 and "Setting Up Triggers on the Signal Analyzer" on page 10.

Using the graphical user interface

On the MXG:

- 1. Select **Preset** > **Preset** to set the instrument to a known state.
- In the Output area, set Frequency to 1 GHz and Power to 0 dBm.These values are coupled to CW Frequency and Total Power (RMS) in

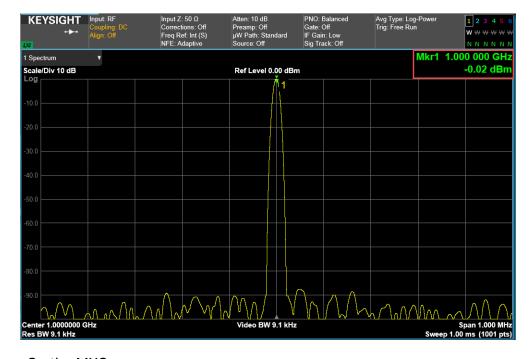
These values are coupled to CW Frequency and Total Power (RMS) in the corresponding RF Output Block.

3. Set RF Out to **On** by selecting the numbered channel indicator switch.

This enables the RF Out for the indicated channels, in this case Channel 1 if using a multi-channel MXG.

4. For multi-channel instruments only: In the top right corner of the display, set RF Out (All) to **On** by selecting the switch.

NOTE

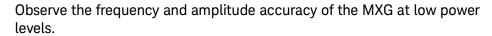

In order to turn on RF for any channel, both the RF Out for the specific channel (for example, Channel 1 or Channel 2), and RF Out All must be turned on.

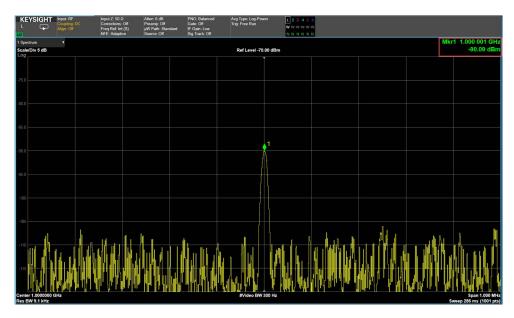
On the Signal Analyzer:

1. Select **Mode Preset** to set Spectrum Analyzer mode to a known state.

- 2. From the Menu Panel, select **Frequency** and set Center Frequency to 1 **GHz** and Span to 1 **MHz**.
- 3. Select Peak Search.

Observe the accuracy of the amplitude and frequency of the signal.

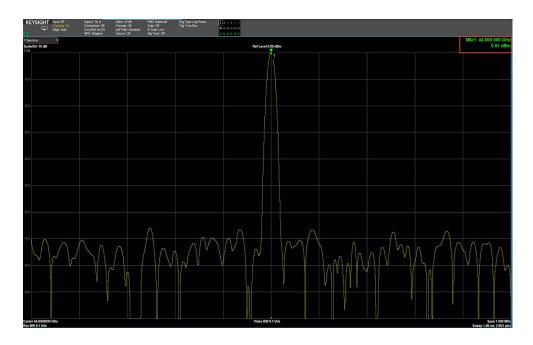



On the MXG:

- 1. Set Output 1 Power to -90 dBm.
- 2. Ensure that RF Out is On.

On the Signal Analyzer:

- 1. Select Amplitude and set Ref Level to -70 dBm and Scale/Div 5 dB.
- 2. Select BW and set Video BW to 300 Hz.
- 3. Select Peak Search.



On the MXG:

1. Set Frequency to 8 GHz and Power to 0 dBm.

On the Signal Analyzer:

- 1. Select Frequency and set Center Frequency to 8 GHz.
- 2. Select Amplitude and set Ref Level to 0 dBm and Scale/Div to 10 dB.
- 3. Select BW > Video BW and set to Auto.
- 4. Select Peak Search.

Observe the frequency and amplitude accuracy at higher frequency levels.

Using the equivalent SCPI commands

Creating a CW signal on Channel 1.

On the MXG:

SYSTem: PRESet

RF1:FREQuency:CW 1GHZ

RF1:POWer:AMPLitude 0dBm

RF1:OUTPut:STATe ON

For multi-channel instruments, set RF Out (all) to On.

RFALl:OUTPut ON

On the Signal Analyzer:

FREQuency: CENTer 1GHZ

FREQuency: SPAN 1MHZ

CALCulate:MARKer1:MAXimum

On the MXG:

RF1:FREQuency:CW 1GHZ

RF1:POWer:AMPLitude -90dBm

RF1:OUTPut:STATe ON

On the Signal Analyzer:

DISPlay:WINDow1:TRACe:Y:RLEVel -70

DISPlay:WINDow1:TRACe:Y:PDIVision 5

BWIDth: VIDeo 300Hz

CALCulate:MARKer1:MAXimum

On the MXG:

RF1:FREQuency:CW 8GHZ

RF1:POWer:AMPLitude 0dBm

On the Signal Analyzer:

FREQuency: CENTer 8GHZ

DISPlay:WINDow1:TRACe:Y:RLEVel 0

DISPlay:WINDow1:TRACe:Y:PDIVision 10

BANDwidth: VIDeo: AUTO ON

CALCulate:MARKer1:MAXimum

Setting Up Amplitude Modulation

NOTE

The MXG must have the E7642APPC PathWave Signal Generation for IQ Based AM, FM, and Phase license installed.

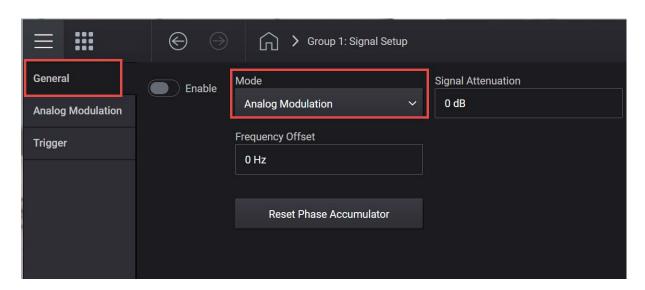
NOTE

Ensure the equipment and triggers are properly configured. Refer to "Equipment Setup" on page 9 and "Setting Up Triggers on the Signal Analyzer" on page 10.

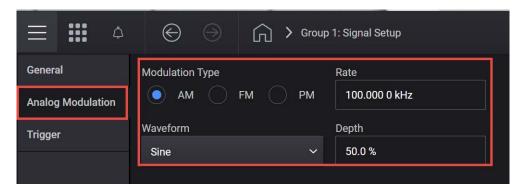
Follow the steps below for AM analog modulation using the internal I/Q modulation source.

Using the graphical user interface

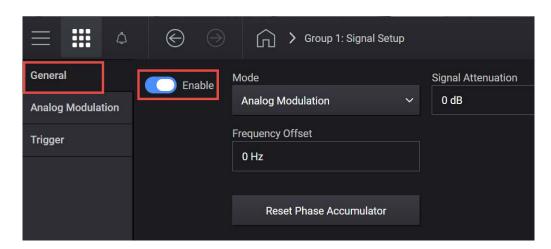
On the MXG:


- 1. Select **Preset** > **Preset** to set the instrument to a known state.
- 2. Set Frequency to 6 GHz and Amplitude to 0 dBm.

3. Select the Signal block.



4. From the Mode dropdown, select Analog Modulation.



5. Select the Analog Modulation tab and set:

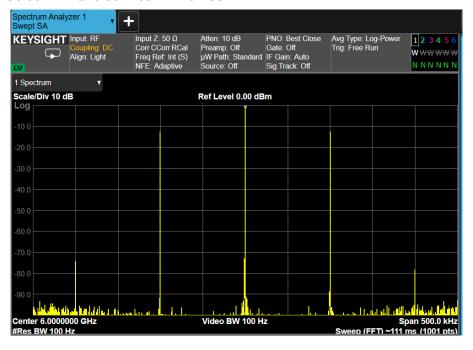
- a. Modulation Type to AM.
- b. Waveform to Sine.
- c. Rate to 100 kHz.
- d. Depth to 50%.

6. Select the General tab > Enable.

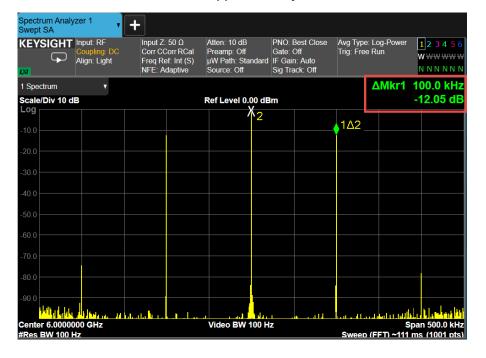
Selecting Enable automatically turns on both Output Modulation and Internal I/Q Modulation as displayed in the Output Modulation block.

7. Close the Vector Modulation Signal Setup by selecting the **Home** icon at the top of the display.

8. Set RF Out to **On** by selecting the numbered channel indicator switch.


This enables the RF Out for the indicated channels, in this case Channel 1 if using a multi-channel MXG.

On the Signal Analyzer:


- 1. Select Mode Preset to set Spectrum Analyzer mode to a known state.
- 2. Select **Frequency** and set Center Frequency to **6 GHz** and Span to **500 kHz**.

- 4. Select Peak Search.
- 5. Use markers to measure sideband power relative to the center frequency by selecting Marker Delta. Select Next Pk Right until the second marker is at the next highest peak.

The Delta Marker should be approximately -12 dB for 50% AM.

Using the equivalent SCPI commands

On The MXG:

SYSTem: PRESet

RF1:FREQuency:CW 6GHZ

RF1:POWer:AMPLitude 0dBm

SIGNal: MODE AMODulation

SIGNall: AMODulation: TYPE AM

SIGNal1:AM:SHAPe SINE

SIGNal1:AM: FREQuency 100KHZ

SIGNal1:AM 50

SIGNall ON

RF1:OUTPut:STATe ON

For multi-channel instruments, set RF Out (all) to On.

RFALl:OUTPut ON

On the Signal Analyzer:

FREQuency: CENTer 6GHZ

FREQuency: SPAN 500KHZ

BANDwidth 100 Hz

CALCulate:MARKer1:MODE DELTa

CALCulate: MARKer1: MAXimum: RIGHt

Repeat the above command until the marker is at the next highest peak.

To retrieve the delta marker:

CALCulate:MARKer1:Y?

Setting Up Frequency Modulation

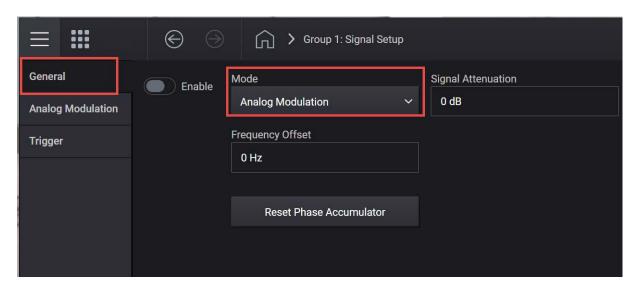
NOTE

The MXG must have the E7642APPC PathWave Signal Generation for IQ Based AM, FM, and Phase license installed.

NOTE

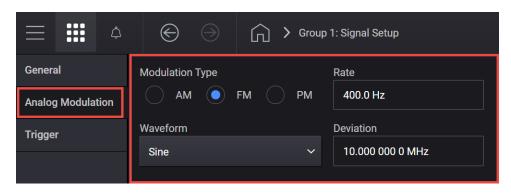
Ensure the equipment and triggers are properly configured. Refer to "Equipment Setup" on page 9 and "Setting Up Triggers on the Signal Analyzer" on page 10.

Follow the steps below for FM analog modulation using the internal I/Q modulation source.

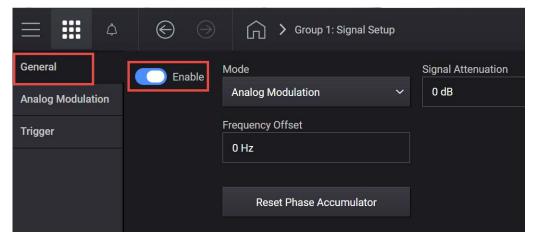

Using the graphical user interface

On the MXG:

- 1. Select **Preset** > **Preset** to set the instrument to a known state.
- 2. Set Frequency to 6 GHz and Amplitude to 0 dBm.
- 3. Select the Signal block.

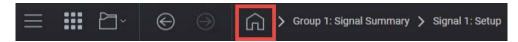


4. From the **Mode** dropdown, select **Analog Modulation**.



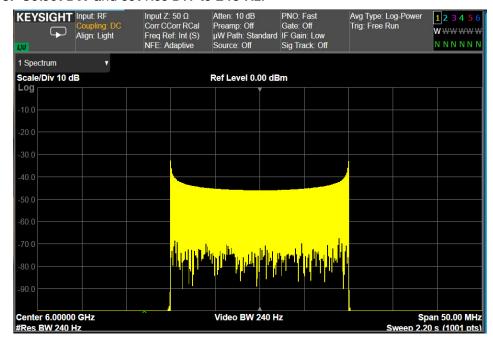
- **5.** From the left pane, select the **Analog Modulation** tab and set:
 - a. Modulation Type to FM.

- b. Waveform to Sine.
- c. Rate to 400 Hz.
- d. Deviation to 10 MHz.


6. Select the General tab > Enable.

Selecting Enable automatically turns on both Output Modulation and Internal I/Q Modulation as displayed in the Output Modulation block.

7. Close the Vector Modulation Signal Setup by selecting the **Home** icon at the top of the display.


8. Set RF Out to **On** by selecting the numbered channel indicator switch.

This enables the RF Out for the indicated channels, in this case Channel 1 if using a multi-channel MXG.

On the Signal Analyzer:

- 1. Select Mode Preset to set Spectrum Analyzer mode to a known state.
- 2. Select **Frequency** and set Center Frequency to **6 GHz** and Span to **50 MHz**.
- 3. Select BW and set Res BW to 240 Hz.

Using the equivalent SCPI commands

On the MXG:

SYSTem: PRESet

RF1:FREQuency:CW 6GHZ

RF1:POWer:AMPLitude 0dBm

SIGNal: MODE AMODulation

SIGNal1:AMODulation:TYPE FM

SIGNal1:FM:SHAPe SINE

SIGNal1:FM:FREQuency 400HZ

SIGNal1:FM 10MHZ

Basic Measurements Making Measurements

SIGNal1 ON

RF1:OUTPut:STATe ON

For multi-channel instruments, set RF Out (all) to On.

RFALl:OUTPut ON

On the Signal Analyzer:

FREQuency:CENTer 6GHZ FREQuency:SPAN 50MHZ

ACPower: BANDwidth 240 Hz

Setting Up Phase Modulation

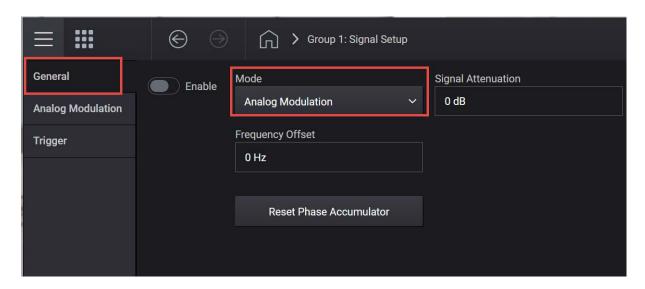
NOTE

The MXG must have the E7642APPC PathWave Signal Generation for IQ Based AM, FM, and Phase license installed. The X-Series Analyzer must have N9063EM0E Analog Demodulation Measurement license installed.

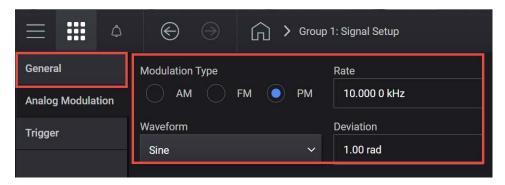
NOTE

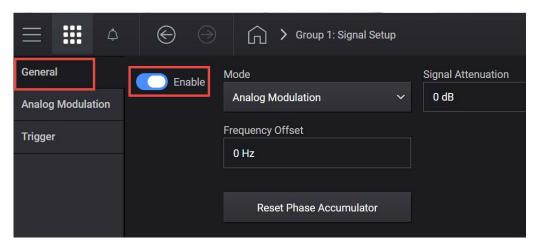
Ensure the equipment and triggers are properly configured. Refer to "Equipment Setup" on page 9 and "Setting Up Triggers on the Signal Analyzer" on page 10.

Follow the steps below for PM analog modulation using the internal I/Q modulation source.


Using the graphical user interface

On the MXG:


- 1. Select **Preset** > **Preset** to set the instrument to a known state.
- 2. Set Frequency to 6 GHz and Amplitude to 0 dBm.
- 3. Select the Signal block to open.


4. Select the **Mode** dropdown and select **Analog Modulation**.

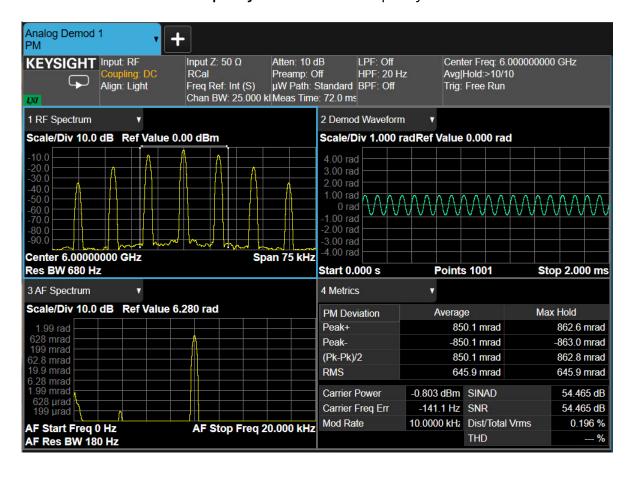
- 5. From the left pane, select the Analog Modulation tab and set:
 - a. Modulation Type to PM.
 - b. Waveform to Sine.
 - c. Rate to 10 kHz.
 - d. Deviation to 1 rad.

6. Select the General tab > Enable.

7. Close the Vector Modulation Signal Setup by selecting the Home icon at the top of the display.

8. Set RF Out to **On** by selecting the numbered channel indicator switch.

This enables the RF Out for the indicated channels, in this case Channel 1 if using a multi-channel MXG.


On the Signal Analyzer:

From the Menu Panel (on the top right of the display), select Mode/Meas >
 Analog Demod mode > PM Measurement > Quad View.

NOTE

If accessing the instrument via a Remote Desktop connection, select the Screen tab (at the top of the display) to open the Mode/Measurement/View Selector window.

- 2. Select Mode Preset to set Spectrum Analyzer mode to a known state.
- 3. Select Frequency and set Center Frequency to 6 GHz.

Using the equivalent SCPI commands

On the MXG:

SYSTem: PRESet

RF1:FREQuency:CW 6GHZ

RF1:POWer:AMPLitude 0dBm

SIGNal: MODE AMODulation

SIGNall: AMODulation: TYPE PM

SIGNal1:PM:SHAPe SINE

SIGNal1:PM:FREQuency 10KHZ

SIGNal1:PM 1

SIGNall ON

RF1:OUTPut:STATe ON

For multi-channel instruments, set RF Out (all) to On.

RFALl:OUTPut ON

On the Signal Analyzer:

INSTrument:CONFigure:ADEMOD:PM

SYSTem: PRESet

DISPlay:VIEW:ADVanced:SELect "QUAD"

FREQuency: CENTer 6GHZ

Setting Up a Multitone Signal

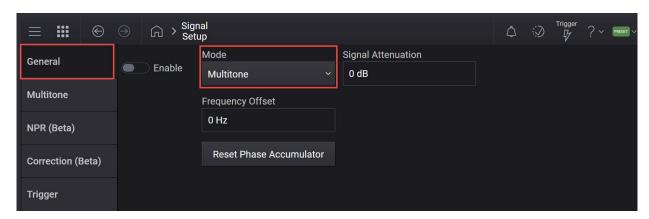
This example shows you how to create a multitone signal, which allows you to separate the usable frequency band into multiple channels. This can make a signal that is difficult to characterize in the time domain more readable.

NOTE

The MXG must have the E7621APPC PathWave Signal Generation for Multitone license installed.

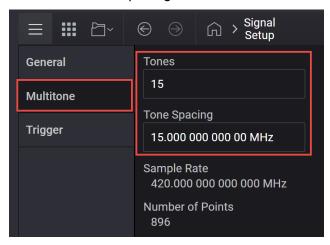
NOTE

Ensure the equipment and triggers are properly configured. Refer to "Equipment Setup" on page 9 and "Setting Up Triggers on the Signal Analyzer" on page 10.

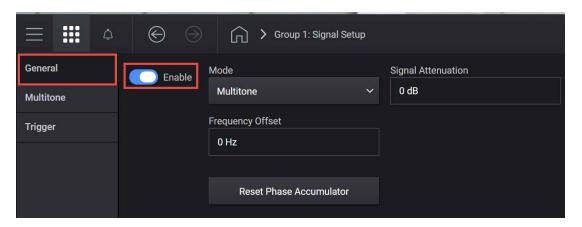

Using the graphical user interface

On the MXG:

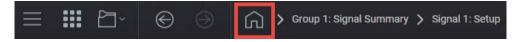
- 1. Select **Preset** > **Preset** to set the instrument to a known state.
- 2. Set Frequency to 6 GHz and Amplitude to -10 dBm.
- 3. Select the Signal block to open.



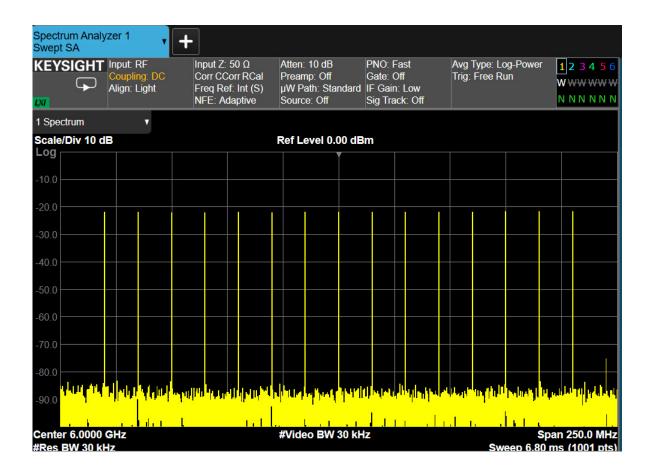
4. Select the **Mode** dropdown and select **Multitone**.



- 5. Select the Multitone tab and set:
 - a. Set Tones to 15 >x1.


b. Set Tone Spacing to 15 MHz.

6. Select the General tab > Enable.


7. Close the Vector Modulation Signal Setup selecting the **Home** icon at the top of the display.

8. Ensure that RF Out is On.

On the Signal Analyzer:

- 1. Select Mode Preset to set Spectrum Analyzer mode to a known state.
- 2. Select Frequency and set Center Frequency to 6 GHz and Span to 250 MHz.
- Select BW and set Res BW to 30 kHz.Observe the 15 tones.

Using the equivalent SCPI commands

On the MXG:

SYSTem: PRESet

RF1:FREQuency:CW 6GHZ

RF1:POWer:AMPLitude -10dBm

SIGNal1: MODE MTONes

SIGNal1:MTONe:ARB:NTON 15

SIGNal1:MTONe:ARB:FSP 15MHZ

SIGNall ON

RF1:OUTPut:STATe ON

For multi-channel instruments, set RF Out (all) to On.

RFALl:OUTPut ON

On the Signal Analyzer:

Change to Spectrum Analyzer mode, Swept SA measurement.

INSTrument:CONFigure:SA:SAN

DISPlay:VIEW:ADVanced:SELect "NORMAL"

FREQuency: CENTer 6GHZ

FREQuency:SPAN 250MHZ

BANDwidth: RESolution 30KHZ

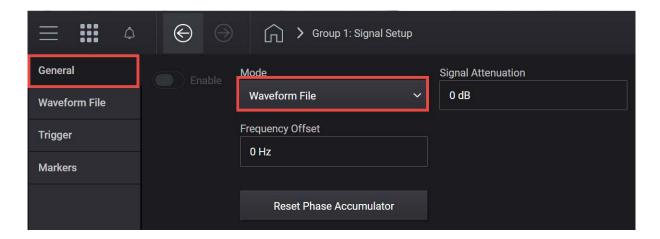
Setting Up Waveform File Vector Modulation

In this section, we will load a GSM and a WCDMA waveform into the MXG to demonstrate the accuracy of the MXG's vector modulation.

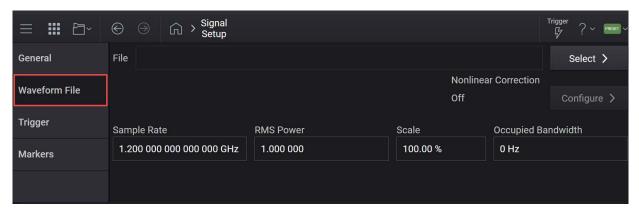
The MXG supports all ARB waveforms that are provided on the X-Series sources. This section will use a few of the ARB files that come with the X-Series sources.

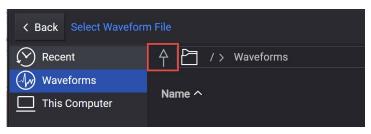
NOTE

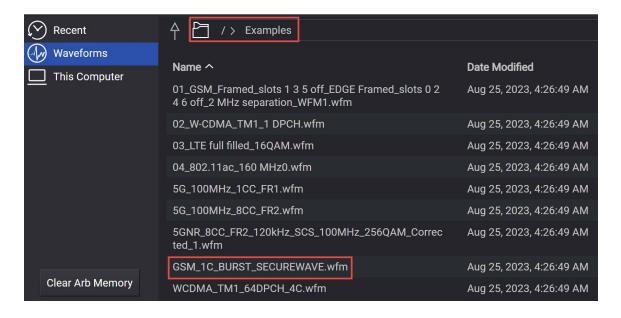
Ensure the equipment and triggers are properly configured. Refer to "Equipment Setup" on page 9 and "Setting Up Triggers on the Signal Analyzer" on page 10.

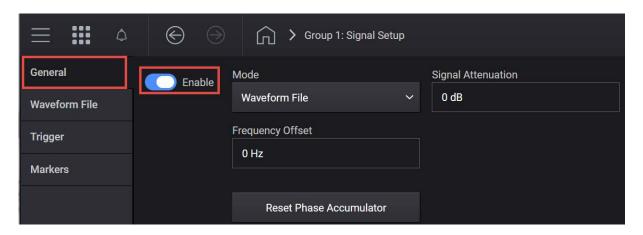

Using the graphical user interface

On the MXG:

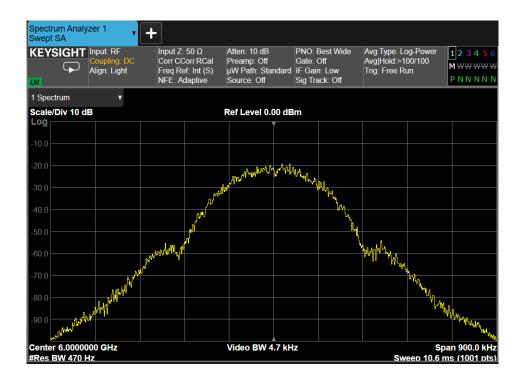

- 1. Select **Preset** > **Preset** to set the instrument to a known state.
- 2. Set Frequency to 6 GHz and Amplitude to 0 dBm.
- 3. Select the Signal block to open.


- 4. In the Vector Modulation Signal Setup:
 - a. Set Mode to Waveform File.

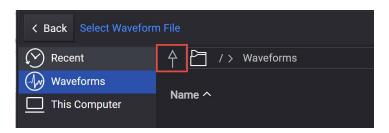

b. In the left panel, select the Waveform File tab.


- c. Use File Select to navigate to the Waveforms folder.
- d. Select the Up arrow icon to access the Examples folder.

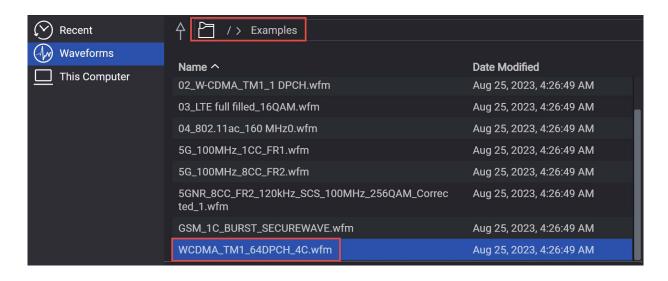
e. Open the Examples folder and highlight GSM 1C BURST SECUREWAVE.wfm, then Select.


f. Select the General tab > Enable.

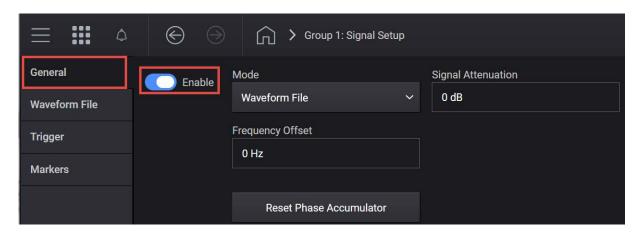
5. Select the Home icon and ensure that RF Out is on.


On the Signal Analyzer:

- 1. Select Mode Preset to set Spectrum Analyzer mode to a known state.
- 2. Select Frequency and set Center Frequency to 6 GHz and Span to 900 kHz.
- 3. Select BW and set Res BW to 470 Hz.
- 4. Select **Trace** and set Trace Type to **Max Hold**.
- 5. Observe the GSM signal.



On the MXG:


- 1. Select the **Signal** block to open the Vector Modulation Signal Setup.
- 2. From the **Waveform** tab on the left side of the display, choose File **Select** to navigate to the **Waveforms** folder.
- 3. Select the Up arrow icon to access the Examples folder.

4. Open the Examples folder and highlight WCDMA_TM1_64DPCH_4C.wfm, then **Select**.

5. Select the General tab > Enable.

6. Select the Home icon and ensure that RF Out is on.

On the Signal Analyzer:

- 1. Select BW and set Res BW to 620 Hz.
- 2. Select Frequency and set Center Frequency to 6 GHz and Span to 30 MHz.
- 3. Observe the WCDMA signal.

Using the equivalent SCPI commands

On the MXG:

SYSTem: PRESet

RF1:FREQuency:CW 6GHZ

RF1:POWer:AMPLitude 0dBm

SIGNal1:MODE WAVeform

SIGN1:WAV "/Examples/GSM_1C_Burst.wfm"

SIGNall ON

RF1:OUTPut:STATe ON

For multi-channel instruments, set RF Out (all) to On.

RFALl:OUTPut ON

On the Signal Analyzer:

FREQuency: CENTer 6GHZ

FREQuency: SPAN 900KHZ

ACPower: BANDwidth 470 Hz

DISPlay:TXPower:WINDow1:TRACe:MAXHold ON

On the MXG:

SIGN1:WAV "/Examples/WCDMA TM1 64DPCH 4C.wfm"

SIGNall ON

RF1:OUTPut:STATe ON

On the Signal Analyzer:

ACPower: BANDwidth 620 Hz

FREQuency: SPAN 30MHZ

Using the N5186A as a Multifunction Generator

Introduction

A function generator is a type of signal generator that is used to generate various waveforms with adjustable parameters to generate complex signals. Keysight's Multifunction Generator option 303 and UNT, first seen on the N5171B, includes a slew of function generators which can output complex signals. These signals can either be output directly to the LF port or routed to the modulators, ultimately output through the RF port. When using the function generators for modulation, the adjustable parameters include modulation type, frequency, amplitude, and phase. Often used in the fields of prototyping, development, testing, and calibration especially in the context of communication systems. An accurate function generator can help engineers accelerate the research and design process to bring high performance designs to the market quicker.

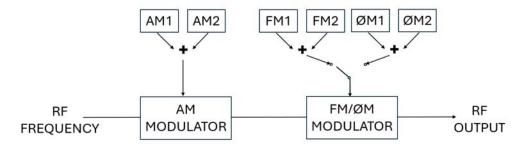
Supported Signal Generators with Option 303 and UNT

- N5171B
- N5172B
- N5173B
- N5181B
- N5182B
- N5183B
- N5185A
- N5186A
- M9484C

Theory of Operation

Multifunction generator N5186A Option 303 is a collection of six function generators that can be used independently or in parallel (up to five), ultimately being applied to the RF signal of choice or routed to the Low Frequency (LF) Output port. The LF Output port is designed to output low-frequency signals, making it ideal for directly using the function generators as well as measuring them. Ignoring the external function generator inputs (Ext 1 and Ext 2), there are six selectable function generators: Function Generator 1 (Func Gen 1), Function Generator 2 (Func Gen 2), Dual Function Generator (Dual Func Gen), Swept Function Generator 2 (Noise Gen 2).

Figure 1-1 Multifunction Generator Block Diagram



In Figure 1-1, each function generator (except Noise Gen 1 and Noise Gen 2) can access six periodic waveforms (sine, triangle, square, positive ramp, negative ramp, and pulse), with controllable frequency and phase offset.

The six periodic waveforms are considered the "Basic Waveforms". The Basic Waveforms can be made more complex by combining them using the Dual Function, demonstrated in "Dual Function" on page 49. The Basic Waveforms can also be swept using the Swept Function, demonstrated in "Swept Function" on page 55.

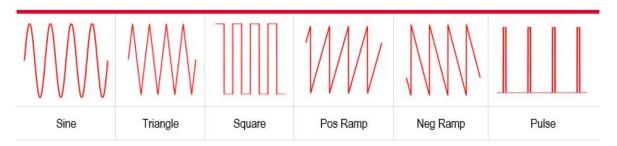
The output of the function generators can be routed to the Amplitude Modulator and the Frequency/Phase modulator. A function generator can be assigned to each of the paths (AM1, AM2, FM1, FM2, ØM1, ØM2) which are summed and applied to the AM and FM/ØM modulators. The modulators are then applied to the RF output signal.

Figure 1-2 Function Generator Paths

Using Multifunction Generator Option 303

Functions can be combined by summation and applied to modulations on the RF output. Modulation formats include AM, FM, and ØM. The LF port can be used to monitor the behavior of a single function generator that is being used by a modulator.

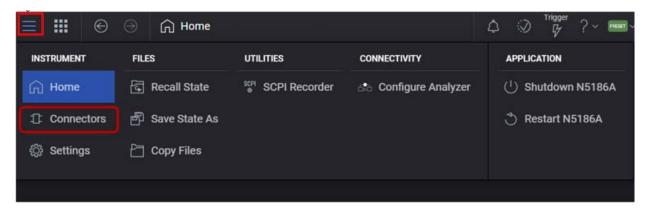
The multifunction generator's flexibility enables a wide range of configurations, catering to numerous testing applications. This adaptability ensures efficient and effective simulation of real-world scenarios for testing RF and LF designs. Ultimately, the multifunction generator enhances testing capabilities, allowing quicker problem solving.


Figure 1-3 Modulation Types

Ţ Modulation **Parameters** Description AM: AM Type The AM modulator allows the user AM Path to select a carrier frequency. message frequency, message AM Depth shape, depth of modulation, AM Source modulation rate, and phase offset. AM Waveform Giving the user full freedom to AM Rate generate the desired amplitude AM Phase Offset modulated signal. FM: FM Path The FM modulator allows the user FM Dev to select a carrier frequency, FM Source deviation from carrier frequency, the modulation rate, the modulation FM Waveform waveform, and phase offset. Giving FM Rate the user full freedom to generate FM Phase Offset their desired frequency modulated signal. ØM: ØM Path The ØM modulator allows the user to select a carrier frequency, phase ØM Dev deviation, modulation rate, ØM Source modulation waveform, and phase ØM Waveform offset. Giving the user full freedom ØM Rate to generate their desired phase ØM Phase Offset modulated signal.

Figure 1-4 LF Output

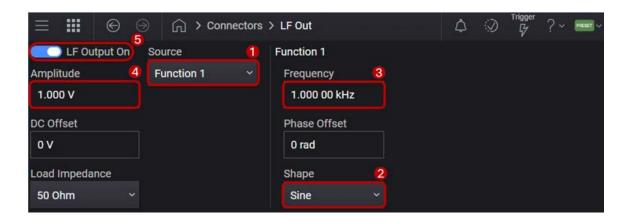
Function	Parameters	Description
DC:	DC Offset	The DC function allows the user to choose a DC offset voltage between -1 V to 5 V in 1 mV increments for MXG and -5 V to 5 V for VXG
Monitor:	Source	This Monitor function allows the user to monitor the behavior of a single function generator. This is for validating the behavior of the function generator when it is being used for modulation.
Function 1 & 2:	Frequency Phase Offset Shape	These functions can take on any of the basic waveforms with a selectable frequency and phase offset.
Dual Function:	 Amp Percent 1 Amp Percent 2 Frequency 1 Frequency 2 Shape 1 Shape 2 Phase Offset 2 	The Dual Function generator is useful for applications where two function generators with a known phase offset are needed.
Noise 1 & 2:	• Type	The noise source functions allow the user to select either Uniform or Gaussian Noise.
Swept Function:	 Sweep Waveform Shape Sweep Start to Stop Time Start Frequency Stop Frequency Sweep Shape 	The Sweep function allows the user to configure a sawtooth or triangle sweeping signal, with selectable start and stop frequencies and sweep time.


Figure 1-5 Basic Waveforms

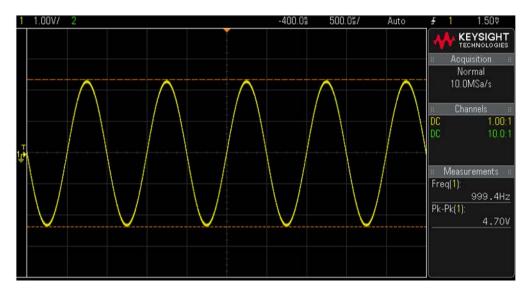
Multifunction Generator Demonstrations

An easy way to visualize the behavior of the internal function generators in the time domain is to use the LF Out port. By routing the function generator of choice to the LF Out, an Oscilloscope can capture its behavior.

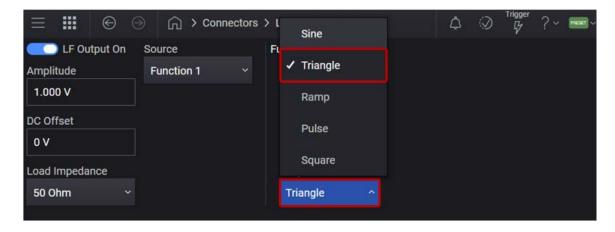
- 1. Select **Preset** > **Preset** to set the instrument to a known state.
- 2. Select the System menu > Connectors.

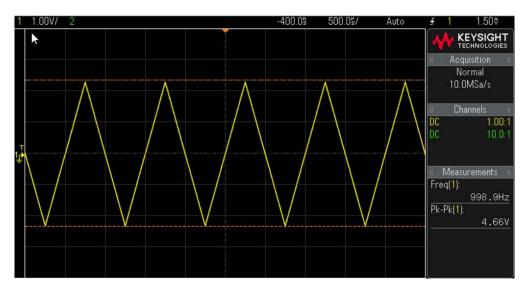


3. In the Connectors window, select LF Out.

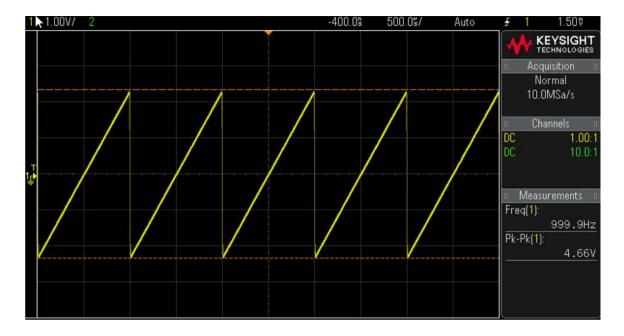


- 4. In the LF Out window, set:
 - Source to Function 1
 - Shape to Sine
 - Frequency to 1 kHz
 - Amplitude to 1 V

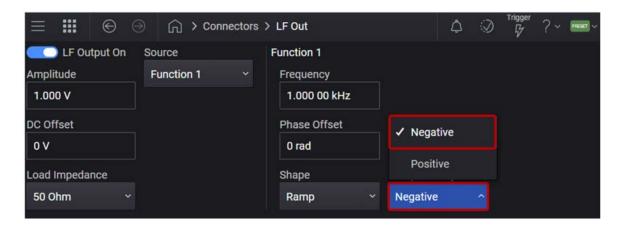

- LF Output On

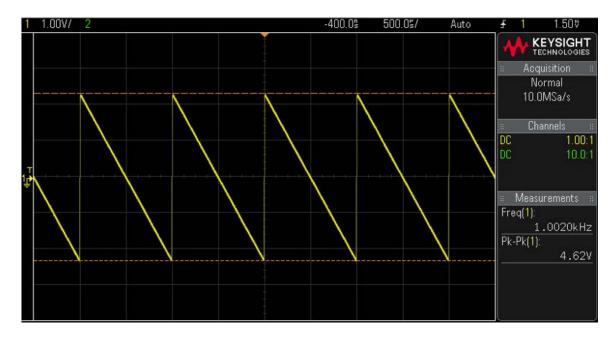


5. Capture the signal on the oscilloscope.

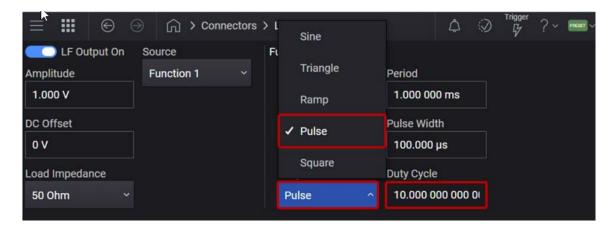


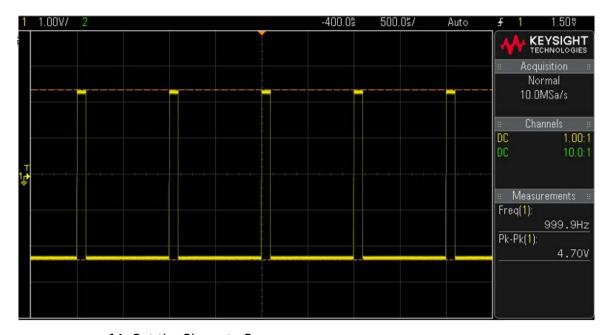
6. On the MXG, change the shape to **Triangle**.





- 8. On the MXG, change the shape to Ramp.
- 9. Capture the signal on the oscilloscope.




10. Set the Ramp Polarity to Negative.

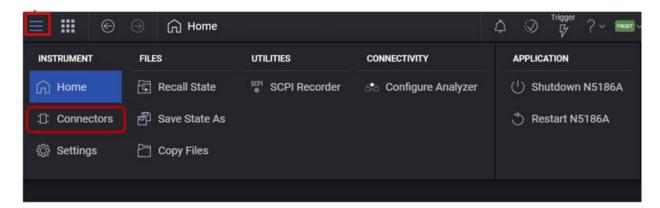
12. Set Shape to Pulse and set Duty Cycle to 10%.

- 14. Set the Shape to Square.
- 15. Capture the signal on the oscilloscope.

Special Function Generators

The list of available function generators that are included with Option 303 are:

- Function 1
- Function
- Dual Function
- Noise 1
- Noise 2
- Swept function

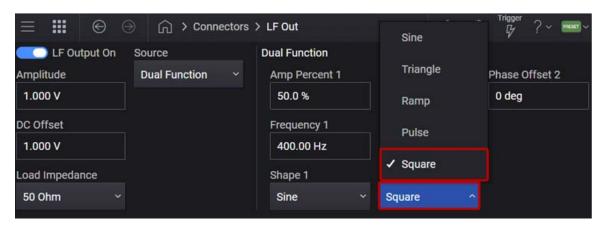

In the "Multifunction Generator Demonstrations" on page 43, the characteristics of function generators 1 and 2 are captured. Function generators such as Dual Function, Noise 1 & 2, and Swept Function have unique functions that can also be visualized using an oscilloscope and signal analyzer.

Dual Function

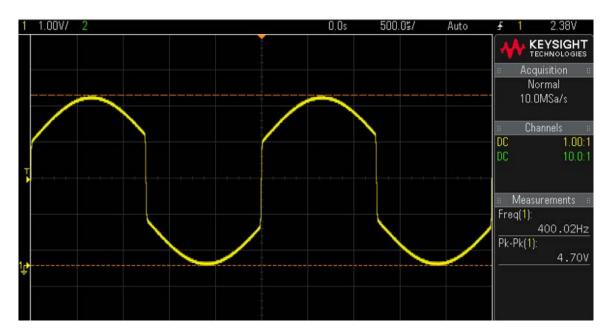
The Dual Function generator is similar to having both Function 1 and Function 2 operating at the same time, but with an adjustable phase offset. Providing precise control of phase difference between two functions.

An easy way to visualize the behavior of a dual function generator is by using an oscilloscope.

- 1. Select **Preset** > **Preset** to set the instrument to a known state.
- 2. Select the **System** menu > **Connectors**.

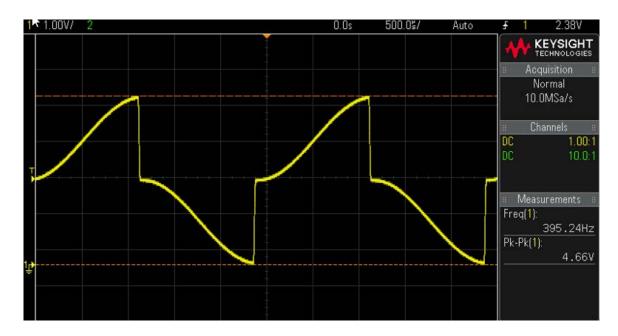

- 3. In the Connectors window, select LF Out.
- 4. In the LF Out window, set:
 - Source to Dual Function1
 - Amplitude to 1 V

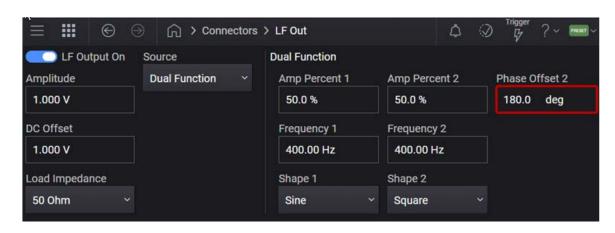
- Toggle LF Output On

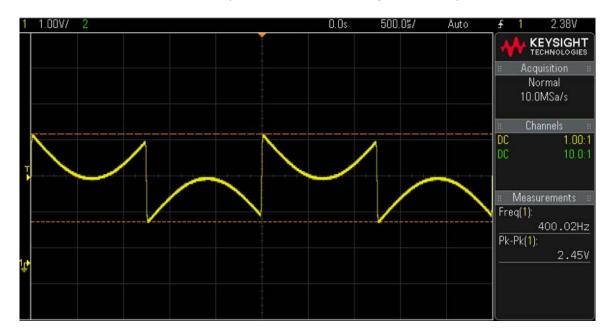


5. Set Shape 2 to Square.

A simply way to demonstrate the phase relationship between functions is to set one to square and adjust the phase and monitor the output.

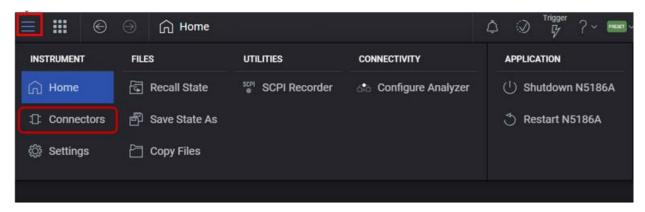

You can see the Sine and Square waves are in phase.


7. In the LF Out window, change the Phase Offset 2 to 90 degrees.


You can see the Sine and Square waves are 90 degrees out of phase.

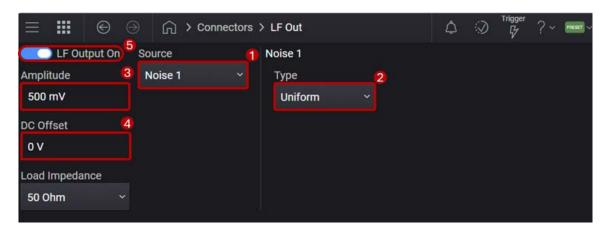
9. Change the Phase Offset 2 to 180 degrees.

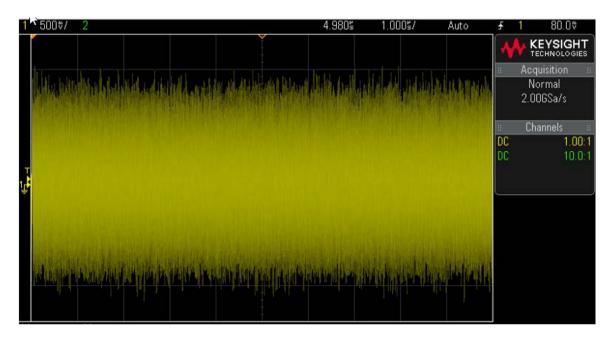
10. Capture the signal on the oscilloscope.



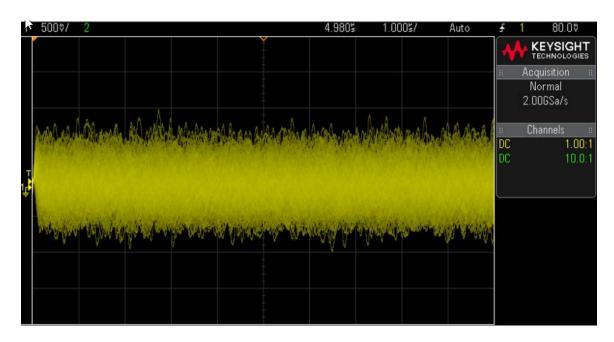
The Sine and Square waves are 180 degrees out of phase.

Noise Generator

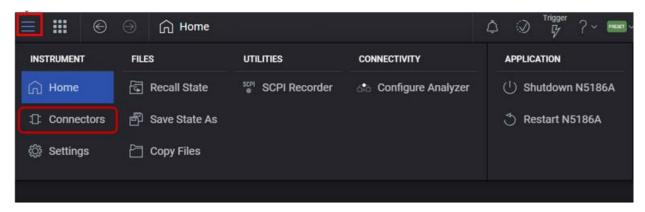

There are two noise generators (Noise 1 and Noise 2) that both provide the same functionality. The noise generators have selectable noise type (Uniform or Gaussian). Noise generators play a critical role in RF immunity testing, fault isolation testing, and many more. The noise generators can be routed to the LF port to observe their behavior.


- 1. Select Preset > Preset to set the instrument to a known state.
- 2. Select the **System** menu > **Connectors**.

- 3. In the Connectors window, select LF Out.
- 4. In the LF Out window, set:
 - Source to Noise 1


- Type to Uniform
- Amplitude to 500 mV
- DC Offset to 0
- Toggle LF Output On

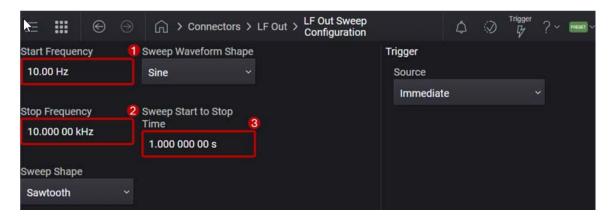
6. Set Type to Gaussian.


7. Capture the signal on the oscilloscope

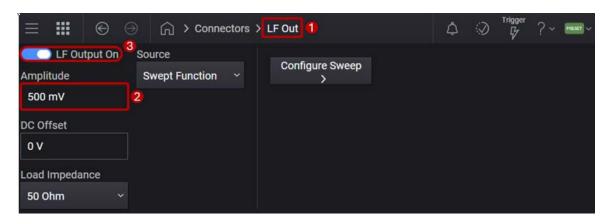
Swept Function


The Swept Function generator has a selectable start frequency, stop frequency, and sweep start to stop time as well as selectable sweep shape, sweep waveform shape, and trigger source. With a frequency range of 10 mHz to 10 MHz and a start-to-stop time range of 20 ns to 89 s. The Swept Function Generator is key in conducting frequency response testing for filters, amplifiers, and various other RF components. The Swept Function Generator can be routed to the LF port to observe it's behavior.

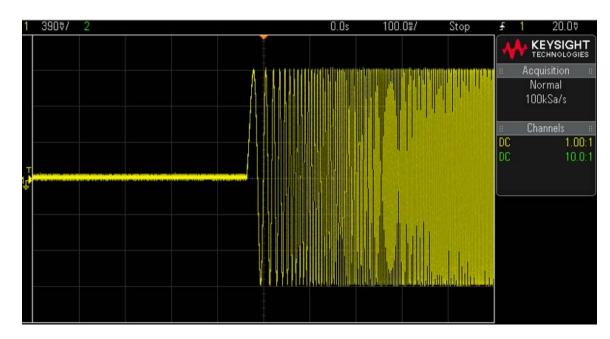
- 1. Select Preset > Preset to set the instrument to a known state.
- 2. Select the **System** menu > **Connectors**.


- 3. In the Connectors window, select LF Out.
- **4.** In the LF Out window, set:

- Source to Sweep Function
- Configure Sweep


5. Set:

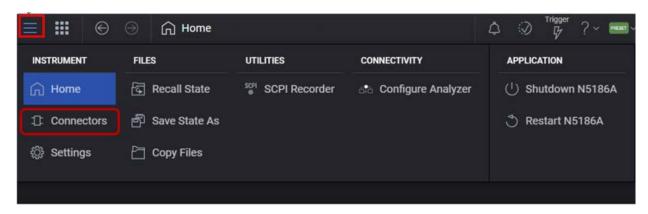
- Start Frequency to 10 Hz
- Stop Frequency to 10 kHz
- Sweep Start to Stop Time to 1 s



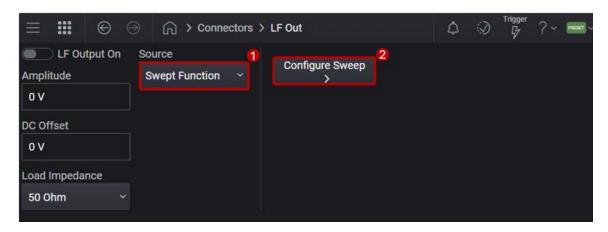
- 6. Select the Back Arrow and select:
 - LF Out
 - Amplitude to 500 mV

- Toggle LF Output On

7. Capture the signal on the oscilloscope



Sawtooth and Triangle Sweep Shapes

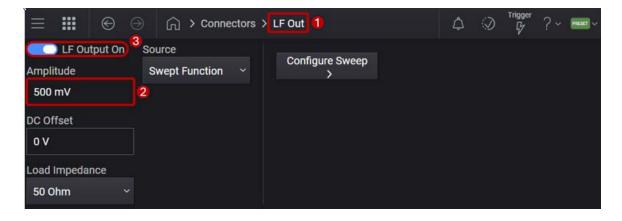

The Swept function generator has two selectable sweep shapes (Sawtooth and Triangle). The Sawtooth sweep shape is a linear sweep from start frequency to stop frequency. When the stop frequency is reached the function generator jumps back to the start frequency and repeats again. The Triangle waveform sweep shape starts at the start frequency then sweeps to the stop frequency, but when the stop frequency is reached the function generator sweeps back down in frequency until reaching the start frequency. This behavior is best seen on a spectrogram measurement.

1. Select **Preset** > **Preset** to set the instrument to a known state.

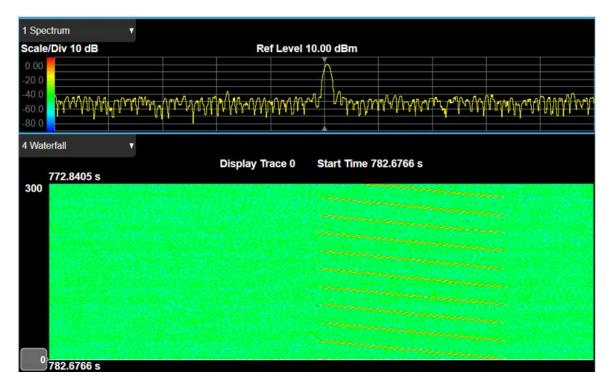
2. Select the **System** menu > **Connectors**.

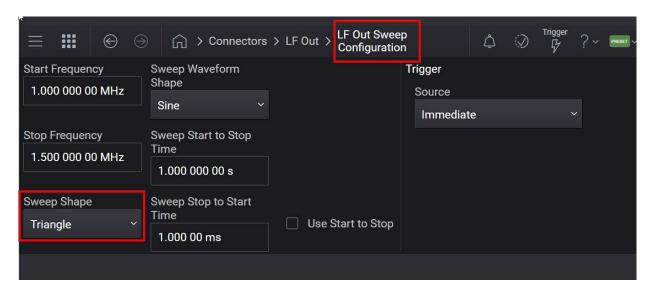


- 3. In the Connectors window, select LF Out.
- 4. In the LF Out window, set:
 - Source to Sweep Function
 - Configure Sweep

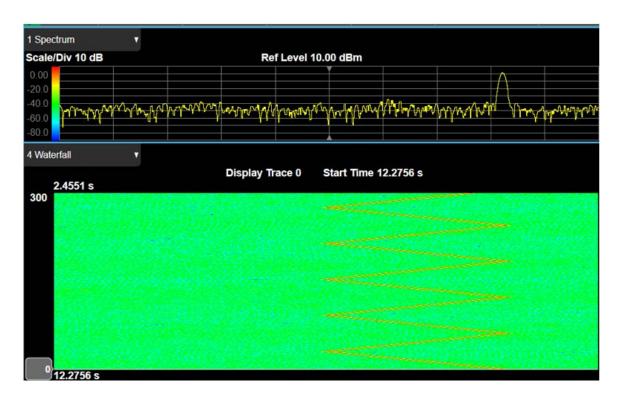


- **5.** Set:
 - Start Frequency to 1 MHz
 - Stop Frequency to 1.5 MHz
 - Sweep Start to Stop Time to 1 s


- Sweep Shape to Sawtooth


- 6. Select the Back Arrow and select:
 - Amplitude to 500 mV
 - Toggle LF Output On

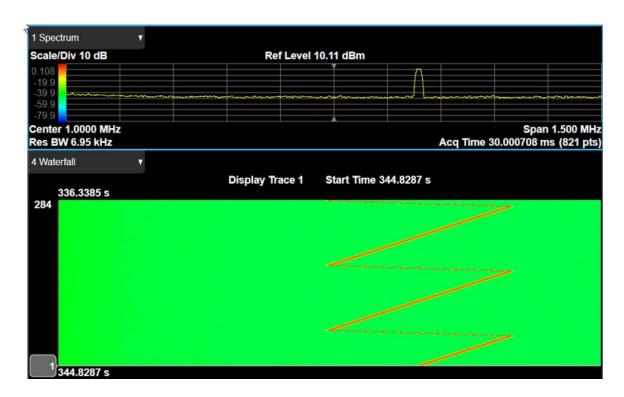
7. Capture the signal on a Spectrogram.



8. Select Configure Sweep > Sweep Shape Triangle.

9. Select the Back Arrow and Toggle LF Output On.

10. Capture the signal on the Spectrogram.



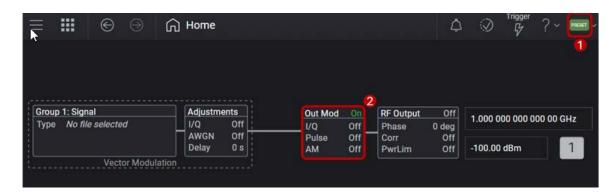
The Triangle Sweep shape has two Sweep Start to Stop Time inputs, one for sweep up and one for sweep down. By changing the sweep times to be unequal, the sweep shape that is seen on the spectrogram will become nonuniform.

11. In the LF Output Sweep Configuration window, set Sweep Start to Stop Time to 300 ms and Sweep Start to Stop Time to 3s.

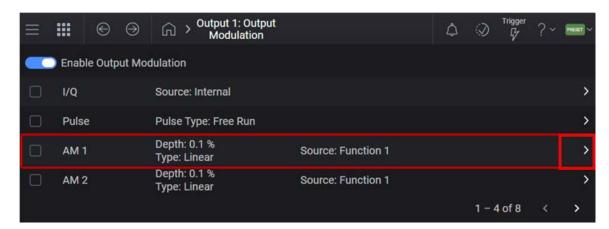
12. Capture the signal on the Spectrogram.

Notice that the signal sweeps from a low to high frequency at a faster rate than from a high to low frequency.

Radio Frequency Modulation Option UNT

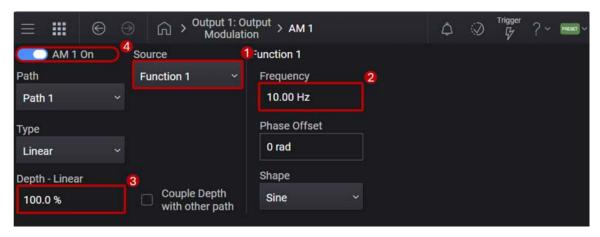

In the sections above the function generators were routed to the LF port to observe their operation individually. This section will demonstrate how Option 303 effects the RF signal at the RF port. The function generators are used to modulate the RF signal through amplitude and frequency/phase modulators (see Figure 1-2 on page 40). We can see how the modulators affect the original RF signal in both time and frequency domain using a signal analyzer and oscilloscope.

Amplitude Modulation

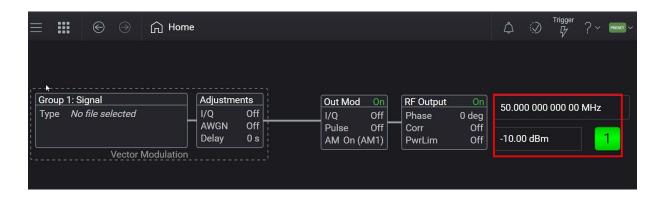

Using an oscilloscope, amplitude modulation can be observed in the time domain. The function generators produce the modulating signal, creating the envelope, while the RF signal serves as the carrier wave.

To apply amplitude modulation:

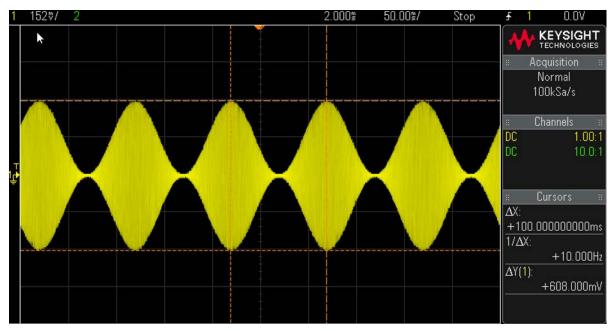
1. Select **Preset** > **Preset** to set the instrument to a known state and select the **Out Mod** block.



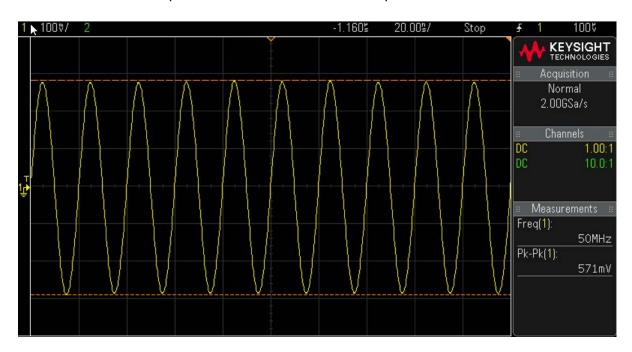
2. In the Output Mode window, select AM1 arrow at the far left side of the window.


- 3. In the AM1 window, set:
 - Source to Function 1
 - Frequency to 10 Hz
 - Depth to Linear to 100%

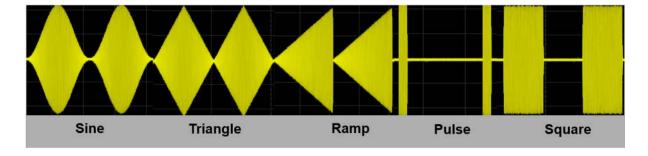
- Toggle AM 1 On



4. Select the Home icon and set:

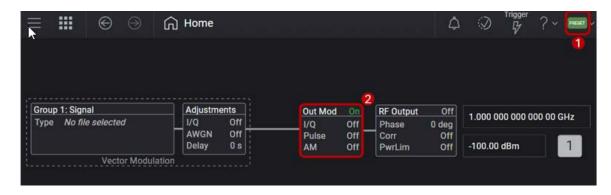

- Frequency to 50 MHz
- Power to -10 dBm
- Toggle RF output On

5. Capture the envelop on the oscilloscope. The shape of the function corresponds to the shape of the envelope. (In this example, the function shape is set to sine.)


6. Capture the carrier on the oscilloscope.

You can also view the modulation on a spectrogram. The modulation can be visualized as varying intensity of the carrier frequency over time.

The shape of the function generator corresponds to the shape of the envelope when generating AM signals.

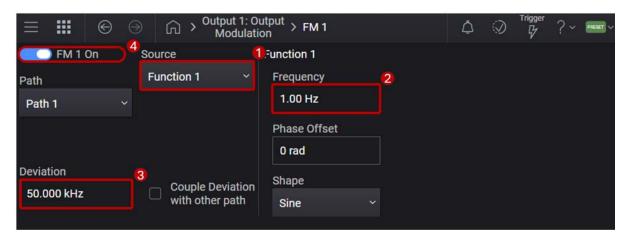


Frequency Modulation

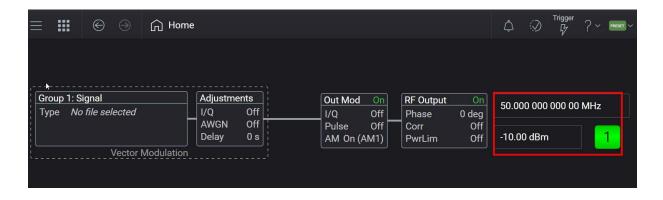
Using a signal analyzer, frequency modulation can be observed using a spectrogram. The function generator produces the modulating signal, which varies the frequency of the RF signal.

To apply frequency modulation:

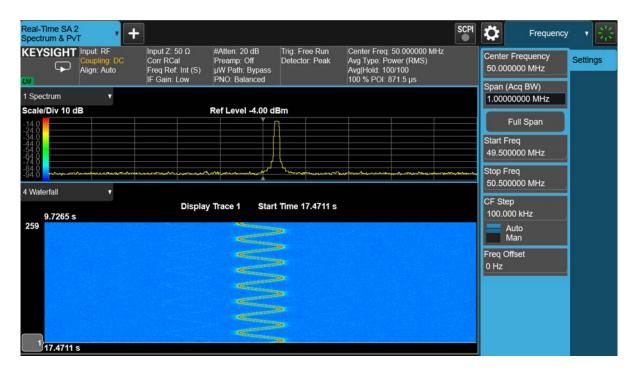
 Select Preset > Preset to set the instrument to a known state and select the Out Mod block.



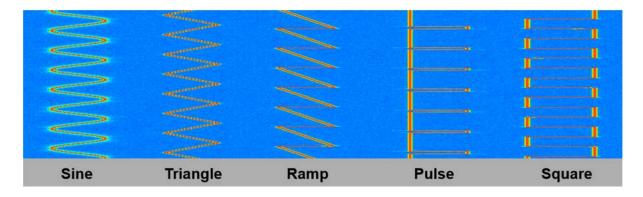
2. In the Output Mode window, select the right arrow at the bottom of the display to select choices 5-8, then select the FM1 arrow at the far left side of the window.


- 3. In the FM1 window, set:
 - Source to Function 1
 - Frequency to 1 Hz
 - Deviation to 50 kHz

Toggle FM 1 On

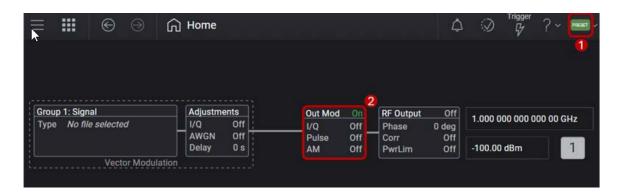


4. Select the Home icon and set:

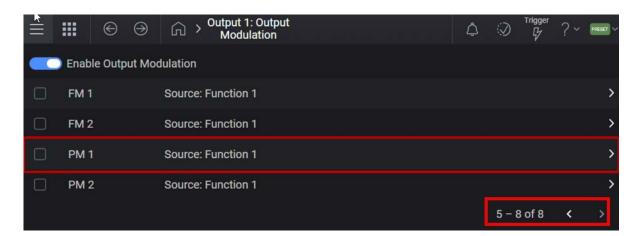

- Frequency to 50 MHz
- Power to -10 dBm
- Toggle RF output On

5. Capture the signal on the Spectrogram.

The shape of the function generator corresponds to the shape of the frequency modulation.

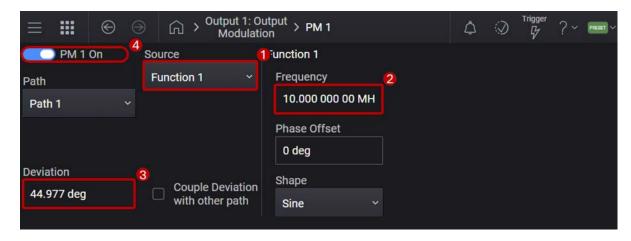


Phase Modulation

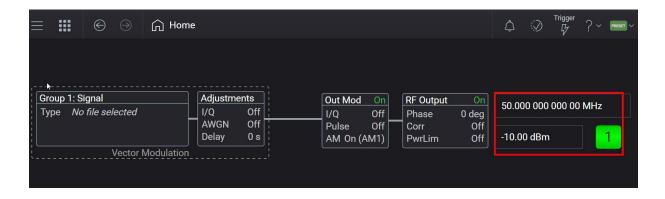

Phase Modulation can be visualized using an Oscilloscope in the time domain. The function generator produces the modulating signal, which varies the phase of the RF signal.

To apply phase modulation:

1. Select **Preset** > **Preset** to set the instrument to a known state and select the **Out Mod** block.



2. In the Output Mode window, select the right arrow at the bottom of the display to select choices 5-8, then select the **PM1** arrow at the far left side of the window.


- 3. In the PM1 window, set:
 - Source to Function 1
 - Frequency to 10 MHz
 - Deviation to 45 deg

- Toggle PM 1 On

4. Select the Home icon and set:

- Frequency to 50 MHz
- Power to -10 dBm
- Toggle RF output On

5. Capture the signal on the Oscilloscope.

Applications

In many scenarios a RF communication system is subject to dynamic environments which can alter the characteristics of an ideal signal. In an ideal environment, the signal being generated and transmitted is the exact signal being received. Physically we know that this is not possible, the signal will be subject to some change. Therefore, a good communication system is resilient and can operate effectively within some range of impairments.

Consider an environment where signal strength fluctuates over time due to varying physical obstructions between the source and receiver. It would be inefficient and inconsistent to physically implement a RF environment to test your communication system. A more effective and repeatable test would be to simulate the conditions of such an environment. Using AM, we can simulate the impairment of varying signal strength. With selectable frequency, shape, and depth the AM modulator is capable of a wide range of simulated environments to support signal strength testing.

One of the design challenges of mobile communications systems comes from Doppler shift. As a transmitter and receiver move towards or away from one another, the signal will compress or stretch, effectively changing the perceived frequency. An effective way to simulate such an environment is by using the FM modulator. Using FM, we can simulate the impairment of varying frequency caused by Doppler shift. With selectable frequency deviation and deviation rate, the FM modulator can effectively simulate Doppler shift environments that mobile communication systems often encounter.

Basic Measurements Making Measurements

When in an environment that causes reflections, a wireless communication system will be subject to multipathing. Consider a communication system that operates in a major city. Large buildings made of concrete and glass windows create many reflections of the signal being sent. These reflections cause variation in phase with respect to the original signal. Using PM, we can simulate the impairment of phase variation caused by multipathing. With selectable phase deviation, deviation rate, and offset the PM modulator can effectively simulate a simple multipath environment caused by reflective surfaces.

Multifunction Generator Option 303 allows you to apply multiple impairments simultaneously. If needed, the function generators can be configured such that five impairments are applied at the same time. It is important to note that there are two paths per modulator, which means that no more than two functions can be applied to one modulation type. The FM/PM modulator can only do one modulation type at a time, meaning that PM and FM cannot run simultaneously. AM and FM or AM and PM can be summed, however.

Conclusion

Simulating RF environments using amplitude, frequency, and phase modulation provides a robust and repeatable method for testing communication systems. By leveraging these modulation techniques, engineers can effectively simulate real-world conditions such as fluctuating signal strength, Doppler shifts, and multipath reflections. This approach not only enhances the reliability of testing but also ensures that communication systems are resilient and capable of operating under various impairments. The Multifunction Generator Option 303 further extends this capability by allowing multiple impairments to be applied simultaneously, offering a comprehensive solution for thorough and efficient receiver testing. Through these simulation techniques, we can better prepare and design communication systems to perform reliably in dynamic and challenging environments.

Basic Measurements Making Measurements

2 Corrections

- "Corrections/De-embedding Using PathWave E7653APPC Software" on page 76
 - "Using a Spectrum Analyzer to Make the Corrections Measurement" on page 82
 - "Using a Power Meter to Make the Corrections Measurement" on page 88
 - "Adding Fixture Blocks using s2p Files" on page 76

Corrections/De-embedding Using PathWave E7653APPC Software

De-embedding is used to remove the effects of test fixtures and cabling from the measurement results. De-embedding uses a model of the test fixture and mathematically removes the fixture characteristics (cables, connectors and other passive components) between the source and the device under test (DUT). Once the desired topology has been characterized, its effects can be removed from the output signal, moving the effective reference plane to the point at which the power sensor was connected.

Blocks can be added from supported file formats (.s2p, .csv, .uflat) or by direct measurement, using one of the supported power sensors (power meter, spectrum analyzer, or a network analyzer).

The MXG must have the E7653APPC PathWave Automatic Channel Response Correction and S-parameter De-embedding license installed.

Adding Fixture Blocks using s2p Files

Amplitude and phase can be corrected by adding multiple s2p files as Fixture Blocks.

An s2p file (also known as a Touchstone file) is an ASCII text file used for documenting the n-port network parameter data and noise data of linear active devices, passive filters, passive devices, or interconnect networks. Each record contains 1 stimulus value and 4 S-parameters (total of 9 values)

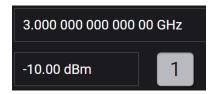
The first line in the figure below (# GHz DB R 50) designates:

- (GHz) designates the frequency in Hz, kHz, MHz, or GHz
- (S) the measurements are in S parameters (rather than Y or Z)

NOTE

- (DB) the values are given in decibel/angle. Instead of DB, you can have RI (real/imaginary) or MA (magnitude/angle)
- (50) the characteristic impedance is 50 ohms

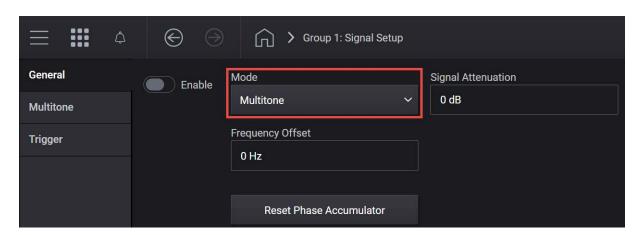
NOTE


If there is not a first line header, the default format is GHz, S-parameters, and magnitude/angle.

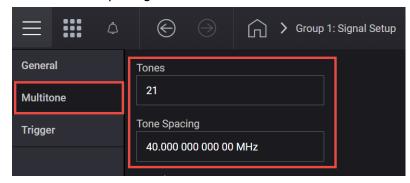
1. Create s2p files in Notepad in the format shown above.

TIP An s2p example file is included on the MXG. Go to

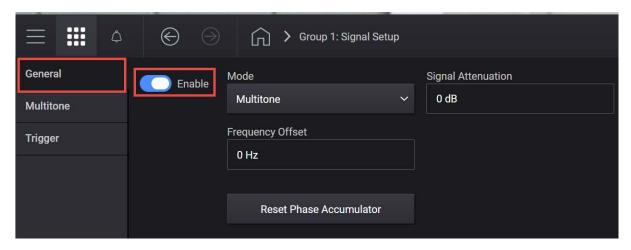
/Examples/simpleAt3GHzInDB.s2p


- 2. Select Preset > Preset to set the instrument to a known state.
- 3. In the MXG Output area, set the Frequency to 3 GHz and Power to -10 dBm.

4. Select the Group 1: Signals block to open.

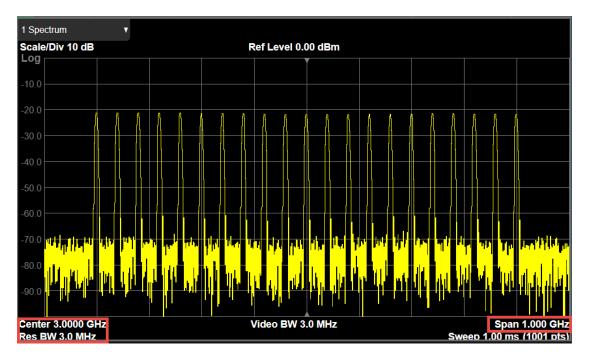


5. Select the **Mode** dropdown and select **Multitone**:

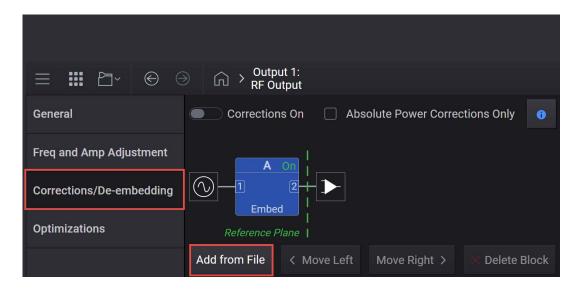


- 6. From the left pane, select Multitone and set:
 - Tones to 21 > x1

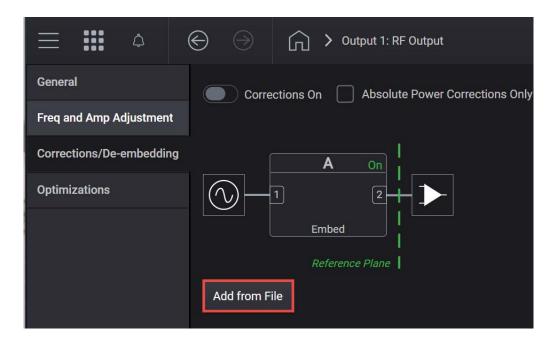
- Tone Spacing to 40 MHz

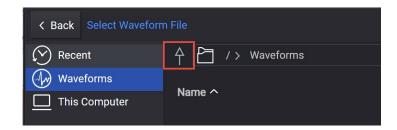


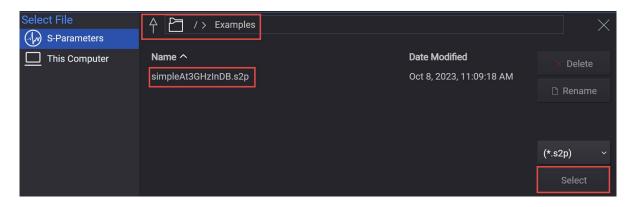
7. Select the General tab > Enable.

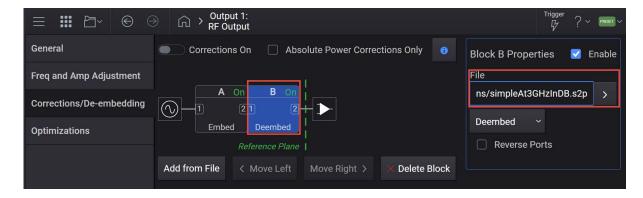


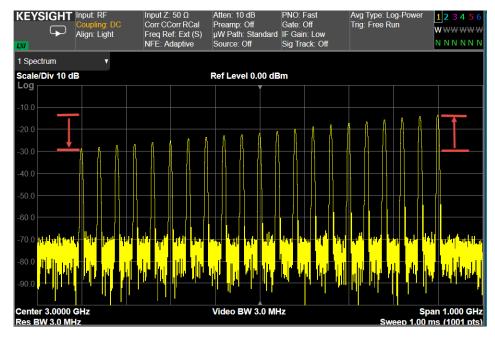
- 8. Close the Signal block by selecting the **Home** icon, and then select **RF Out** channel number to turn on.
- **9.** On the X-Series Signal Analyzer spectrum analyzer in Spectrum Analyzer Mode:
 - Select Mode Preset to set Spectrum Analyzer mode to a known state.
 - Set the Center to 3 GHz

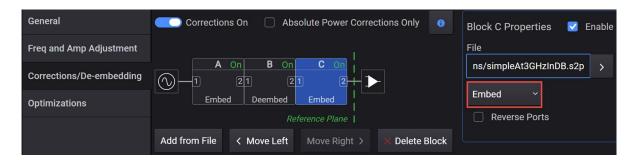

- Set Span to 1 GHz

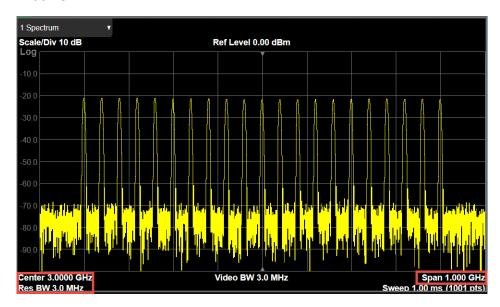

10. On the MXG, select the RF Output block > Corrections/De-embedding.


11. In the Corrections Setup dialog, select Add from File.


12.Select the **Up arrow** icon to access the Examples folder.


13. From the Examples folder select simpleAt3GHzInDB.s2p.


Notice that Block B is added in the Correction Setup diagram.


14. At the top of the display, turn **Corrections On**. View the results on the signal analyzer. Observe how the .s2p file has impacted the signal.

15. Add a third block using the same file name as shown in the steps above. Under Block C Properties, set to **Embed**.

View the results on the X-Series spectrum analyzer. Notice that the corrections are no longer shown. This is because the de-embedded corrections applied in Block B cancel the embedded corrections applied in Block C.

Using a Spectrum Analyzer to Make the Corrections Measurement


When using a spectrum analyzer, it must be locked to the MXG Frequency Reference. This is important because the power measurement can be inaccurate due to a narrow resolution bandwidth (RBW) used in the spectrum analyzer. Supported Keysight X-Series signal analyzers are:

- N9000A/B CXA
- N9010A/B EXA
- N9020A/B MXA
- N9021B MXA
- N9030A/B PXA
- N9032B PXA
- N9040B, N9041B, or N9042B UXA

On the MXG:

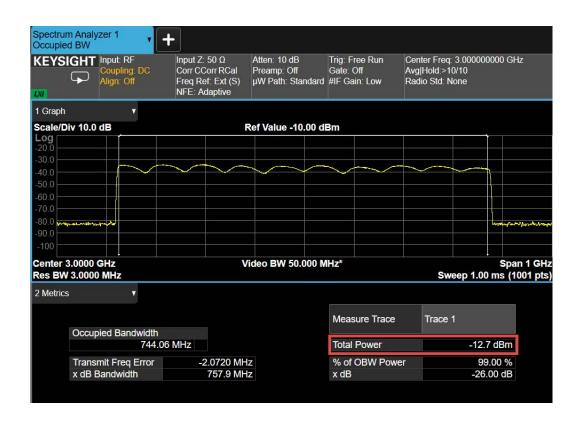
- 1. Connect the Ref Out to the N90x0A/B Ext Reference In.
- 2. Connect cable or DUT between the MXG RF Out and the signal analyzer RF in.
- 3. Select Preset > Preset to set the instrument to a known state.
- 4. Set the Frequency to 3 GHz and Amplitude to -10 dBm.

- 5. Select the Signal block to open.
- **6.** Select the **Mode** dropdown and select **Multitone**.
- 7. Select the **Multitone** tab from the left panel and then, configure the signal to have **501 Tones** with **1.5 MHz Tone Spacing**.

- 8. Select the General tab > Enable.
- **9.** Select the **Home** icon and set RF Out to **On** by selecting the numbered channel indicator switch.

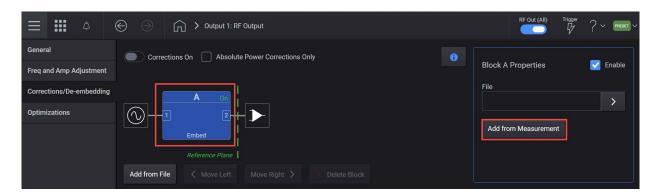
This enables the RF Out for the indicated channels, in this case Channel 1 if using a multi-channel MXG.

On the Signal Analyzer:

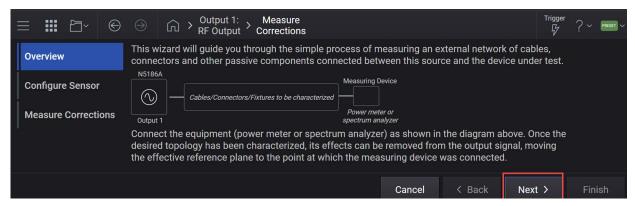

 From the Menu Panel (on the top right of the display), select Mode/Meas > Spectrum Analyzer mode > Occupied BW Measurement > OBW Results View.

NOTE

If accessing the instrument via a Remote Desktop connection, select the Screen tab (at the top of the display) to open the Mode/Measurement/View Selector window.

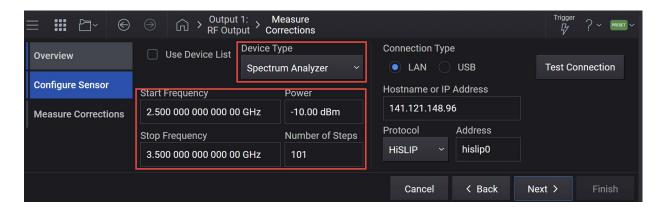

2. Set the Center Frequency to 3 GHz and the Span to 1 GHz.

Observe how the fixturing is impacting this signal, including the flatness and the total power.

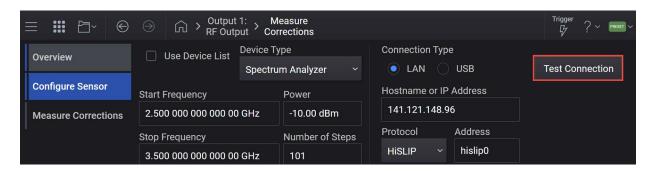


On the MXG:

- Select the RF Output block > Corrections/De-embedding tab to open the Correction Setup.
- 2. Select **Block A** to highlight > **Add from Measurement** to open the Measure Corrections Block Wizard.

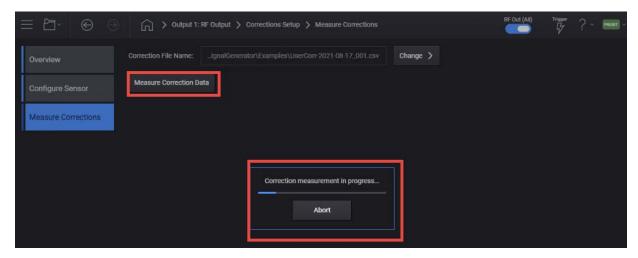


3. Connect the power sensor (in this case, the X-Series signal analyzer) as shown in the diagram below. After reading the overview, select **Next** to move to the Configure Sensor setup.



- **4.** In the Configure Sensor setup, select the **Device Type** dropdown and select **Spectrum Analyzer**.
- 5. Set the Start and Stop Freq, Amplitude, and the Num Steps. For this example Start Freq 2.5 GHz, Stop Freq 3.5 GHz, Amplitude to the highest power used in your measurement (For this example, -10 dBm, which we

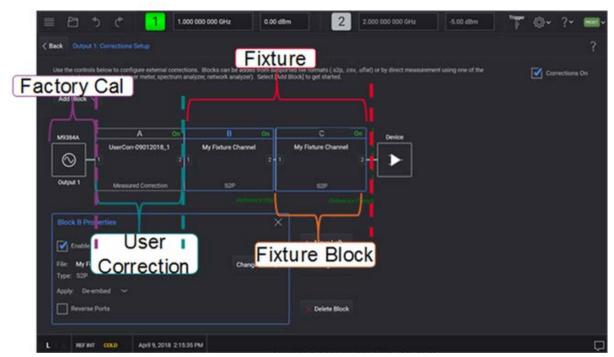
already set in the main window. If you change the value here, it will update the value in the main measurement window.) and Number of Steps to 101 > x1.



6. Set Connection Type to **LAN**, enter the LAN Address and set the Protocol parameters to **HiSLIP**, and then select **Test Connection**.

- 7. Once you are successfully connected, select **Next** to move to the Measure Corrections step.
- 8. Select Measure Correction Data.

During the measurement, the MXG outputs a CW between the Start and Stop Frequencies for the specified number of steps and output power. It will take some time to measure all 101 points, and the progress is indicated by the blue bar. You can watch the signal analyzer as it steps through this process.

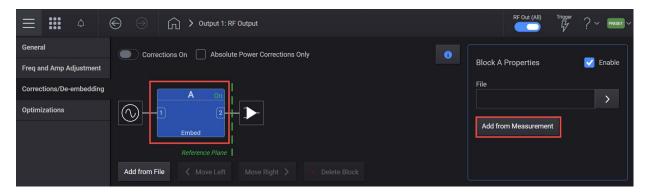

The measurement results are saved to a csv file using an automatically generated file name.

9. When the measurement is complete, select **Finish**, then set **Corrections** On.

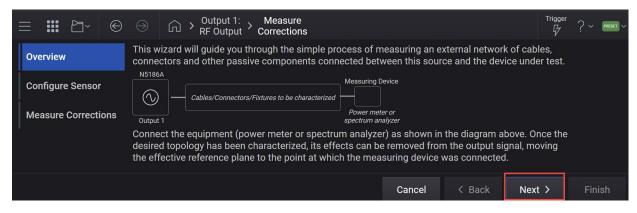
The output csv file is set to Block A.

Block A is dedicated for User Correction. The image below shows how blocks are assigned in the User Correction and Fixture block.

10. On the signal analyzer, Restart the (on the left corner of the user interface) measurement (because it is applying averaging). Observe how the measured corrections impacted the signal. You can easily toggle Corrections on and off on the MXG to see the difference.

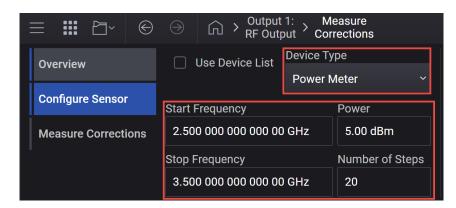

Using a Power Meter to Make the Corrections Measurement

The following USB power sensors can be used for the power measurement.


- U8487A-CFG007
- U8485A-CFG006
- U2000A
- U2001A
- U2002A
- U2004A
- U2000B
- U2001B
- U2000H
- U2001H
- U2002H

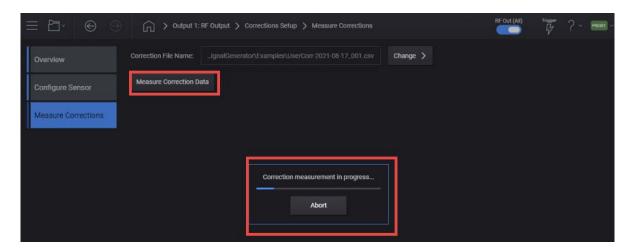
On the MXG:

- 1. Connect the MXG 10 MHz Out to the N90x0A/B Ext Reference In.
- 2. Select the RF Output block > Corrections/De-embedding tab to open the Correction Setup.
- 3. Select the A block (to highlight), then Add from Measurement to open the Measure Corrections Block Wizard.

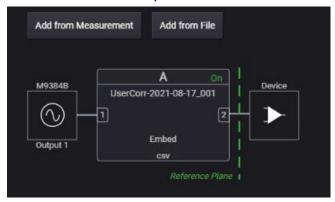


4. Connect the power sensor as shown in the diagram below then select **Next**.

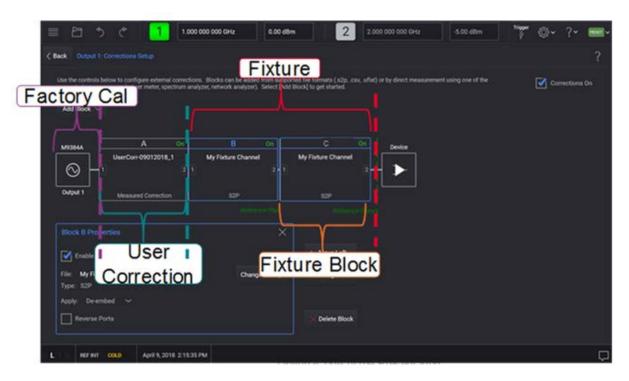
5. Select **Next** to go to Configure Sensor dialog and select the **Power Measurement Device** dropdown > **Power Meter**.


6. Set the Start and Stop Freq, Amplitude, and the Num Steps. For this example Start Freq **2.5 GHz**, Stop Freq **3.5 GHz**, Amplitude to the highest power used in your measurement **5 dBm**, and Num Steps to **20**.

- 7. Select the Connection Type to **USB**, and then specify the Device and VISA Address.
- 8. Select **Test Connection** to verify connectivity, and then select **OK** then **Next** to continue.


You can also calibrate and zero out the power sensor before measuring corrections.

9. Select Next to go to the Measure Corrections dialog and select Measure Correction Data.



During the measurement, the MXG outputs a CW between the Start and Stop Frequencies for the specified number of steps and output power. The measurement results are saved to a csv file using an automatically generated file name.

10. Select Finish. The output csv file is set to Block A.

Block A is dedicated for User Correction. The image below shows how blocks are assigned in the User Correction and Fixture block.

11. Select Corrections On to apply.

Using the equivalent SCPI commands

Using a spectrum analyzer to make the corrections measurement

On the MXG:

SYSTem: PRESet

Set the power level to the highest level used in your measurement.

RF1:POWer:AMPLitude 5dBm

CORRection: PMDevice SANalyzer

CORRection:FLATness:STEP:STARt 5GHZ
CORRection:FLATness:STEP:STOP 7GHZ

CORRection:FLATness:STEP:POINts 20

CORRection: SANalyzer: COMMunicate: TYPE SOCKets

Set the LAN address and protocol parameters for your spectrum analyzer.

CORRection: SANalyzer: COMMunicate: LAN: IP "192.168.1.5"

CORRection: SANalyzer: COMMunicate: LAN: PORT 5025

CORRection: FLATness: CALibrate

CORRection ON

Using a power meter to make the corrections measurement.

On the MXG:

SYSTem: PRESet

RF1:POWer:AMPLitude 5dBm

CORRection:PMDevice PMETer

CORRection:FLATness:STEP:STARt 2.5GHZ CORRection:FLATness:STEP:STOP 3.5GHZ

CORRection:FLATness:STEP:POINts 20

CORRection: SANalyzer: COMMunicate: TYPE USB

NOTE

Use query CORRection: PMETer: COMMunicate: USB: LIST? for a list of all connected USB devices.

CORRection: PMETer: COMMunicate: USB: DEVice "instr0"

[Optional] CORRection: PMETer: CALibrate

[Optional] CORRection: PMETer: ZERO CORRection: FLATness: CALibrate

Corrections

Corrections/De-embedding Using PathWave E7653APPC Software

CORRection ON

Adding fixture blocks using s2P files

On the MXG:

SYSTem: PRESet

RF1:FREQuency:CW 3GHZ

RF1:POWer:AMPLitude -20dBm

SIGNall:MODE MTONe

SIGNal1:MTONe:ARB:NTON 21

SIGNal1:MTONe:ARB:FSP 100MHZ

SIGNall ON

RF1:OUTPut:STATe ON

For multi-channel instruments, set RF Out (all) to On.

RFALl:OUTPut ON

On the X-Series Signal Analyzer:

SYSTem: PRESet

FREQuency: CENTer 3GHZ

FREQuency: SPAN 1GHZ

On the MXG:

Set the path to the s2p data as block 2 (you can use 1 through 4).

CORRection: BLOCk2: FILE "FixtureChannel2"

CORRection: BLOCk2 ON

Add block C with the same file.

CORRection: BLOCk3: FILE "FixtureChannel2"

Change Block C to Embed.

CORRection: BLOCk3: APPLy EMBedding

CORRection: BLOCk3 ON

Corrections
Corrections/De-embedding Using PathWave E7653APPC Software

3 5G New Radio (NR) Measurements

This section includes the following topics:

- "5G Waveform, EVM, and ACP Analysis" on page 96
 - "Setting Up Triggers on the Signal Analyzer using 5G NR Mode" on page 96
 - "Setting Up a 1 CC 3.5 GHz EVM Measurement" on page 98
 - —"Demodulate the Waveform Using the X-Series Signal Analyzer Embedded Application" on page 101
 - -- "Demodulate the Waveform Using the 89601B VSA Software:" on page 106
 - "Setting Up a 1 CC 3.5 GHz ACP Measurement" on page 111
 - -- "Setup the MXG:" on page 111
 - —"Demodulate the Waveform Using the X-Series Signal Analyzer Embedded Application" on page 101
 - -- "Demodulate the Waveform Using the 89601B VSA Software:" on page 106

5G Waveform, EVM, and ACP Analysis

The MXG enables 5G testing with a low error vector magnitude (EVM). The MXG has extremely good EVM at high power levels. However, not all signal analyzers can capture this low value. We will use the X-Series signal analyzer with the 5G NR X-Series application and the VSA software to observe EVM and adjacent channel power (ACP).

Setting Up Triggers on the Signal Analyzer using 5G NR Mode

NOTE

Refer to "Equipment Setup" on page 9 for connecting the instruments.

Setting Up Triggers on the X-Series Signal Analyzer

Using the graphical user interface

1. On the signal analyzer, select Mode/Meas > 5G NR & V2X mode.

NOTE

If accessing the instrument via a Remote Desktop connection, select the Screen tab (at the top of the display) to open the Mode/Measurement/View Selector window.

- 2. Select Mode Preset to set 5G NR mode to a known state.
- 3. Select Mode/Meas > 5G NR V2X Mode > Modulation Analysis Measurement.
- **4.** From the Menu Panel (on the top right of the display), select **Trigger** and set Select Trigger Source to **External 1** and Trigger Level to **1 V**.

Using the equivalent SCPI commands

On the X-Series Signal Analyzer:

INSTrument:CONFigure:NR5G

SYSTem: PRESet

Change the current window to 5G NR Modulation Analysis Measurement Mode

INSTrument:CONFigure:NR5G:EVM

TRIGger: EVM: SOURce EXTernal1

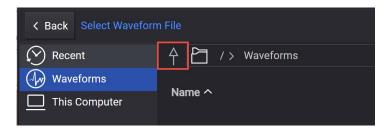
TRIGger:EXTernal1:LEVel 1V

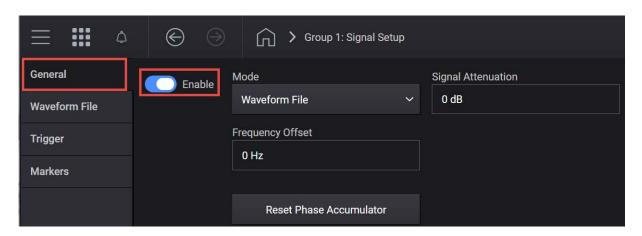
Setting Up a 1 CC 3.5 GHz EVM Measurement

NOTE

Ensure the equipment and triggers are properly configured. Refer to "Equipment Setup" on page 9 and "Setting Up Triggers on the Signal Analyzer using 5G NR Mode" on page 96.

On the MXG:

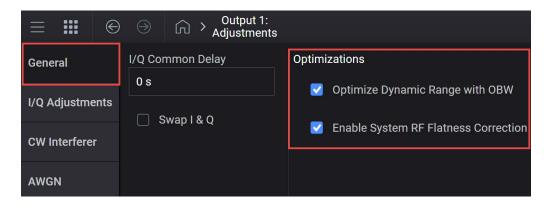

- 1. Select **Preset** > **Preset** to set the instrument to a known state.
- 2. In the Output 1 area, set Frequency to 3.5 GHz and Power to 5 dBm.


3. Select Group 1: Signals block to open.

- **4.** From the **Waveform** tab on the left side of the display, choose File **Select** to navigate to the **Waveforms** folder.
- 5. Select the **Up arrow** icon to access the Examples folder.

6. Open the Examples folder and highlight 5GNR_1CC_FR1_30kHz_SCS_100MHz_256QAM_DC Punctured.wfm, then Select. 7. Select the General tab > Enable.

8. Close the Vector Modulation Signal Setup by selecting the **Home** icon at the top of the display.



9. Select the Adjustments block and select Optimize Dynamic Range with OBW and Enable System RF Flatness Correction.

Optimize Dynamic Range with OBW This setting filters the system RF flatness correction coefficients over the instantaneous bandwidth indicated in the waveform header (or in the "Occupied Bandwidth" settings area under the Signal block > Occupied Bandwidth setting). This has the potential to improve EVM performance by not having to correct for flatness errors outside the requested bandwidth. For example, if RF flatness correction was done at 960 MHz, but you are only interested in an 800 MHz section, then applying the correction flatness to that portion only can improve signal to noise ratio, and therefore EVM when there is a lot of hardware roll off.

Enable System RF Flatness Correction - Disabling this function disables the factory calibrated RF channel flatness equalizer. Depending on the hardware channel response, this may hurt or improve the EVM. This is due to the dynamic range implications as it relates to signal to noise ratio. The greater the RF hardware variations in flatness, the greater the amount of correction is required, the greater the correction effectively reduces the number of

resolution DAC bits that can be used, which degrades the signal to noise ratio and therefore potentially EVM. The trade-off is to balance between flatness and signal to noise ratio.

10. Close the Adjustments Setup by either selecting the Back or the Home icon at the top of the display.

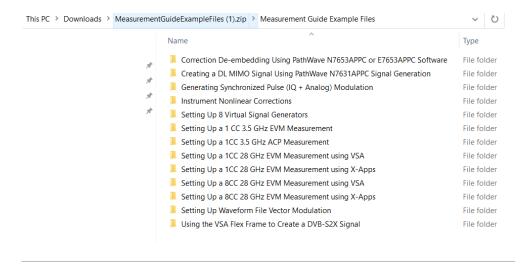
11. Set RF Out to **On** by selecting the numbered channel indicator switch.

This enables the RF Out for the indicated channels, in this case Channel 1 if using a multi-channel MXG.

12. For multi-channel instruments only: In the top right corner of the display, set RF Out (All) to **On** by selecting the switch.

NOTE

In order to turn on RF for any channel, both the RF Out for the specific channel (for example, Channel 1 or Channel 2), and RF Out All must be turned on.


Demodulate the Waveform Using the X-Series Signal Analyzer Embedded Application

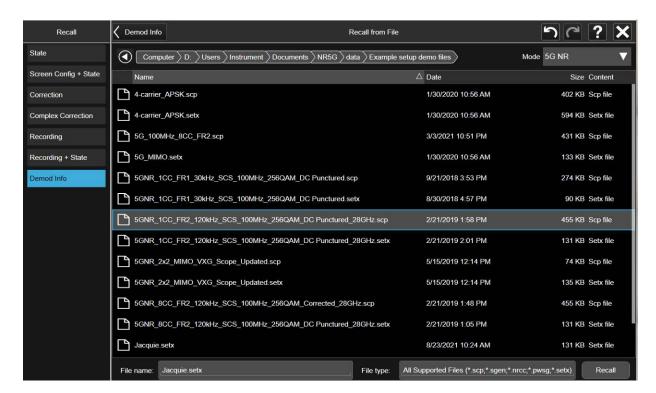
NOTE

You will need to copy the setup files to the X-Series Signal Analyzer or the PC running the VSA application. Go to:

https://www.keysight.com/us/en/lib/software-detail/instrument-firmwar e-software/measurement-guide-example-files.html

Select Download and wait for the zip file to finish downloading to your Downloads folder. This may take a few minutes as it is a 2 GB file. You will find the setup file(s) under the applicable Measurement name.

1. On the signal analyzer, select Mode/Meas > 5G NR & V2X mode.


NOTE

If accessing the instrument via a Remote Desktop connection, select the Screen tab (at the top of the display) to open the Mode/Measurement/View Selector window.

- 2. Select Mode Preset to set 5G NR mode to a known state.
- Select Mode/Meas > 5G NR V2X Mode > Modulation Analysis Measurement.
- 4. Select Recall (If accessing the signal analyzer remotely, select the Folder icon at the bottom of the display) Demod Info > Set Data Type to CC Setup > Recall From >

5GNR 1CC FR1 30kHz SCS 100MHz 256QAM DC punctured 34.scp

Recall

- 5. Select Frequency > Carrier Reference Frequency > 3.5 GHz.
- 6. Select Meas Setup > Advanced tab > Advanced Demod Setup and ensure that RF for Phase Compensation Auto is not selected and the value is 0 Hz. Close the Advanced Settings table.
- 7. Select the **Settings** tab > **Optimize EVM**.

The Optimize EVM function automatically sets the combination of preamplification, mechanical and electronic attenuation, and IF gain based on the measured signal peak level.

EVM should be less than 1%.

Using the equivalent SCPI commands

On the MXG:

```
SYSTem: PRESet

RF1:FREQuency: CW 3.5GHZ

RF1:POWer: AMPLitude 5dBm

SIGNal1: MODE WAVeform

Navigate to the desired waveform file.

SIGNal1: WAVeform "/Examples/
5GNR_1CC_FR1_30kHz_SCS_100MHz_256QAM_DC punctured.wfm"

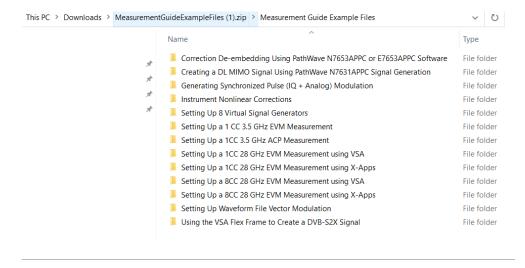
SIGNal1 ON

IQO: CORR: OPT: DYN: RANG: OBW ON

RF1: OUTPut ON

For multi-channel instruments, set RF Out (all) to On.

RFAL1: OUTPut ON
```


On the X-Series Signal Analyzer:

NOTE

You will need to copy the setup files to the X-Series Signal Analyzer or the PC running the VSA application. Go to:

https://www.keysight.com/us/en/lib/software-detail/instrument-firmwar e-software/measurement-guide-example-files.html

Select Download and wait for the zip file to finish downloading to your Downloads folder. This may take a few minutes as it is a 2 GB file. You will find the setup file(s) under the applicable Measurement name.

5G New Radio (NR) Measurements 5G Waveform, EVM, and ACP Analysis

MMEMory:LOAD:EVM:SETup CC0,

"D:\Users\Instrument\Documents\NR5G\data\NR5GEvm\CarrierSetu p\5GNR 1CC FR1 30kHz SCS 100MHz 256QAM DCpunctured.scp"

EVM:CCARrierO:TIME:LENGth:SEARch 10ms

EVM:CCARrier0:TIME:LENGth:RESult 2

EVM:CCARrierO:FRAMe:TRIGger ON

EVM:CCARrierO:DC:PUNCture ON

EVM:CCARrierO:PHASe:COMPensation:AUTO OFF

EVM:CCARrierO:PHASe:COMPensation:FREQuency 0 Hz

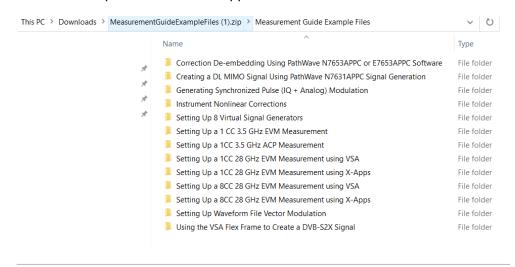
EVM:OPTimize

Demodulate the Waveform Using the 89601B VSA Software:

1. Open the VSA software by selecting Mode Meas > Launch VSA.

NOTE

If accessing the instrument via a Remote Desktop connection, select the Screen tab (at the top of the display) to open the Mode/Measurement/View Selector window.

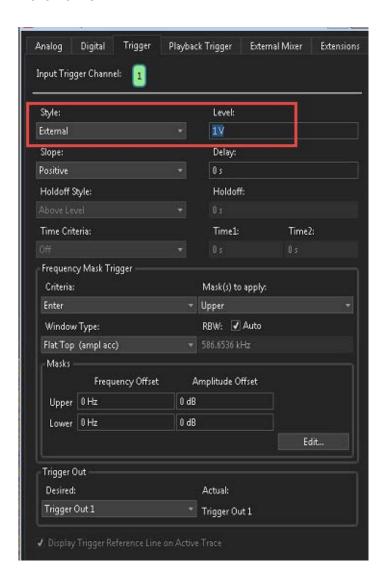

2. From the menu bar, select File > Preset > All to set the VSA to a known state.

NOTE

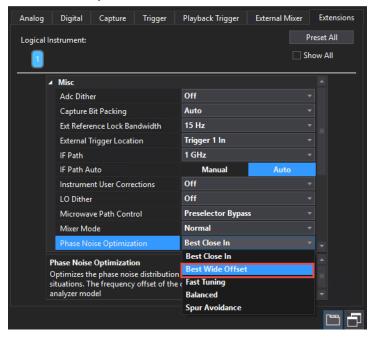
You will need to copy the setup files to the X-Series Signal Analyzer or the PC running the VSA application. Go to:

https://www.keysight.com/us/en/lib/software-detail/instrument-firmwar e-software/measurement-guide-example-files.html

Select Download and wait for the zip file to finish downloading to your Downloads folder. This may take a few minutes as it is a 2 GB file. You will find the setup file(s) under the applicable Measurement name.

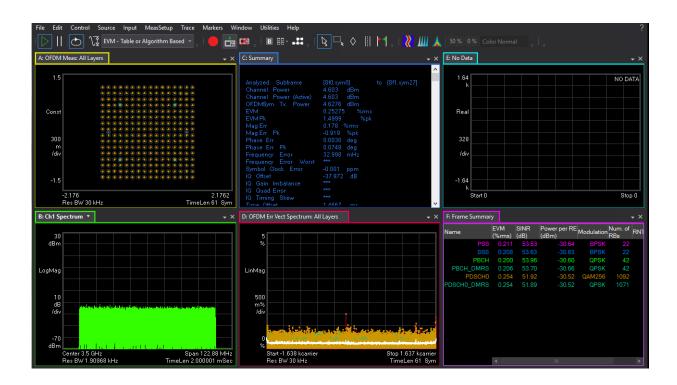


- 3. Select File > Recall > Recall Setup and navigate to


 5GNR 1CC FR1 30kHz SCS 100MHz 256QAM DC punctured.setx
- 4. From the toolbar, select the **Pause** Icon.

 Pausing the measurement will help speed up the setup time.

5. From the menu bar, select Input > Trigger and set Style to External and Level to 1.0 V.

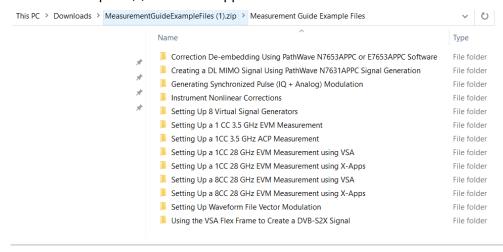

6. Select the Extensions tab and change the External Trigger location to Trigger 1 In (if using an N9040B with Option H1G, select Trigger 3) and Phase Noise Optimization to Best Wide Offset.

- From the toolbar, select the Auto-Range dropdown and select EVM-Table or Algorithm Based.
 - EVM Table or Algorithm Based performs EVM optimization based on prescribed table/algorithm instead of using EVM in the feedback loop. This method of EVM auto-range is normally faster than Meas Based Iteration, but may not achieve the most optimal setup for minimized EVM.
 - EVM Meas Based Iteration has a feedback loop around the entire measurement, uses the measured EVM in the feedback loop, and tries to adjust hardware parameters to minimize the EVM. It is the slowest EVM auto-range method, but it should achieve the most optimal setup for good EVM.

8. Select the **Auto-Range** icon to run the measurement for EVM optimization. This may take a few minutes to complete.

Using the equivalent SCPI commands

On the X-Series Signal Analyzer:


INSTrument: SELect VSA89601

NOTE

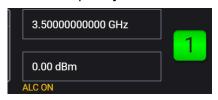
You will need to copy the setup files to the X-Series Signal Analyzer or the PC running the VSA application. Go to:

https://www.keysight.com/us/en/lib/software-detail/instrument-firmwar e-software/measurement-guide-example-files.html

Select Download and wait for the zip file to finish downloading to your Downloads folder. This may take a few minutes as it is a 2 GB file. You will find the setup file(s) under the applicable Measurement name.


```
MMEMory:LOAD
"D:Users\Instrument\Documentts\NR5G\data\NR5GEvm\Carrier
Setup\5GNR_1CC_FR1_30kHz_SCS_100MHz_256QAM_DC
punctured.setx"

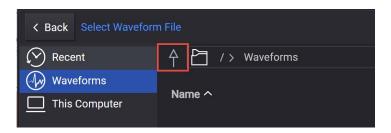
INITiate:PAUSe
INPut:TRIGger:STYle "EXTERNAL"
INPut:TRIGger:LEVel:EXTernal 1V
INPut:EXTension:PARameters:SET "ExtTriggerLoc", 2
INPut:EXTension:PARameters:SET "PhaseNoiseOptDualLoop", 1
Set the 5G NR Demod Result Length to 10 Subframes:
NR5G:RLENgth 10
NR5G:SUBFrame:INTerval 2
Set the Acquisition Mode to "Frame Trigger is Present"
nr5g:FRAMe:TRIGger:ENABled 1
```


Setting Up a 1 CC 3.5 GHz ACP Measurement

NOTE

Ensure the equipment and triggers are properly configured. Refer to "Equipment Setup" on page 9 and "Setting Up Triggers on the Signal Analyzer using 5G NR Mode" on page 96.

Setup the MXG:


- 1. Select Preset > Preset to set the MXG to a known state.
- 2. Set Frequency to 3.5 GHz and Amplitude to 0 dBm.


3. Select Group 1: Signals block to open.

- **4.** From the Waveform tab on the left side of the display, choose File **Select** to navigate to the **Waveforms** folder.
- 5. Select the **Up arrow** icon to access the Examples folder.

6. Open the Examples folder and highlight 5GNR_1CC_FR1_30kHz_SCS_100MHz_256QAM_DC Punctured.wfm, then Select. 7. Select the General tab > Enable.

8. Close the Vector Modulation Signal Setup by selecting the **Home** icon at the top of the display.

9. Set RF Out to **0n** by selecting the numbered channel indicator switch.

This enables the RF Out for the indicated channels, in this case Channel 1 if using a multi-channel MXG.

10.For multi-channel instruments only: In the top right corner of the display, set RF Out (All) to **On** by selecting the switch.

NOTE

In order to turn on RF for any channel, both the RF Out for the specific channel (for example, Channel 1 or Channel 2), and RF Out All must be turned on.

On the X-Series Signal Analyzer:

- 1. Select **Mode Preset** to set 5G NR V2X mode to a known state.
- 2. Select Mode/Meas > 5G NR & V2X Mode > ACP Measurement.

NOTE

If accessing the instrument via a Remote Desktop connection, select the Screen tab (at the top of the display) to open the Mode/Measurement/View Selector window.

3. Select Frequency and set Carrier Reference Frequency to 3.5 GHz.

Using the equivalent SCPI commands

On the MXG:

SYSTem: PRESet

RF1:FREQuency:CW 3.5GHZ

RF1:POWer:AMPLitude 0dBm

SIGNal1:MODE WAVeform

SIGNal1:WAVeform

 $\verb|`'/Examples/5GNR_1CC_FR1_30khz_SCS_100Mhz_256QAM_DCPunctured.|$

 ${\tt wfm''}$

SIGNall ON

DM:OPTimization:CHANnel ACP

RF1:OUTPut ON

For multi-channel instruments, set RF Out (all) to On.

RFALl:OUTPut ON

On the X-Series Signal Analyzer:

SYSTem: PRESet

INSTrument:CONFigure: NR5G:ACP

CCARrier: REFerence 3.5GHZ

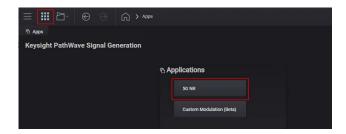
ACPower: CORRection: NOISe ON

- 4 Other X-Series Signal Analyzer Measurements
 - "Using the X-Series Analyzer's SCPI Recorder Function" on page 116
 - "Using Real-time Spectrogram Streaming (Option RRT) for N9032B and N9042B" on page 129

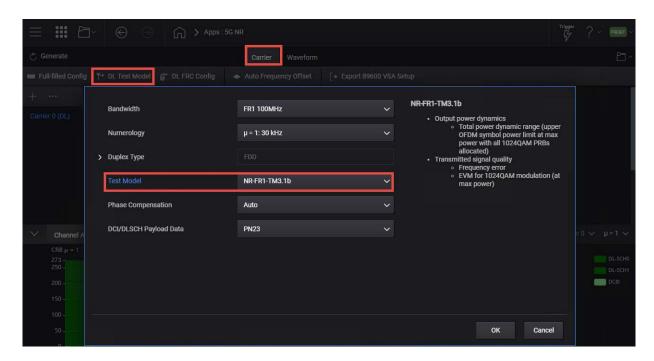
Using the X-Series Analyzer's SCPI Recorder Function

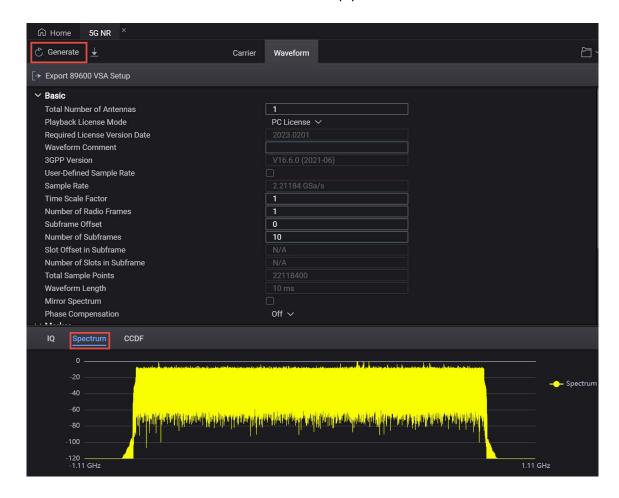
The SCPI Recorder feature allows you to view active recording content, and edit the content. Right-click or touch and hold on any UI control to display a menu allowing you to record the SCPI associated with the control. You can also record a series of commands. These commands can be viewed and edited directly, or you can also play, save/recall for future use.

For this example, we will generate a simple 5G NR 100 MHz signal.


Using the graphical user interface

On the MXG:


- 1. Select Preset > Preset to set the VXG to a known state.
- 2. In the Output area, set Frequency to 3.5 GHz and Power to 0 dBm.
- 3. Select the Radio Apps block to open the mode selection panel.


4. Select 5G NR.

 Select the Carrier tab > DL Test Model and set Test Model to NR-FR1-TM3.1b, leave the remain settings at their default values, and select OK.

6. Select the **Waveform** tab, then **Generate** to generate the Waveform, and then select **Home** to exit the setup panel.

7. Set RF Out to **On** by selecting the numbered channel indicator switch.

This enables the RF Out for the indicated channels, in this case Channel 1 if using a multi-channel VXG.

On the X-Series Signal Analyzer:

1. Select Mode/Meas > 5G NR &V2X Mode > OK.

NOTE

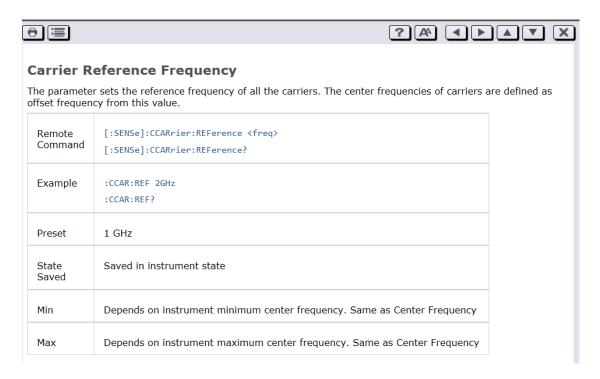
If accessing the instrument via a Remote Desktop connection, select the Screen tab (at the top left of the display) to open the Mode/Measurement/View Selector window.


Select Mode Preset to set Spectrum Analyzer 5G NR mode to a known state.

- From the Menu Panel (or the Screen tab), select Mode/Meas > 5G NR & V2X Mode > Modulation Analysis Measurement > OK.
- 4. Select Frequency and set Carrier Reference Frequency to 3.5 GHz.
 - Touch and hold the Carrier Reference Frequency function for at least one second on the touch screen or if using a mouse pointer and right click to open the menu.

- Select Show SCPI Command.

The SCPI command for this function is displayed in the dialog box.

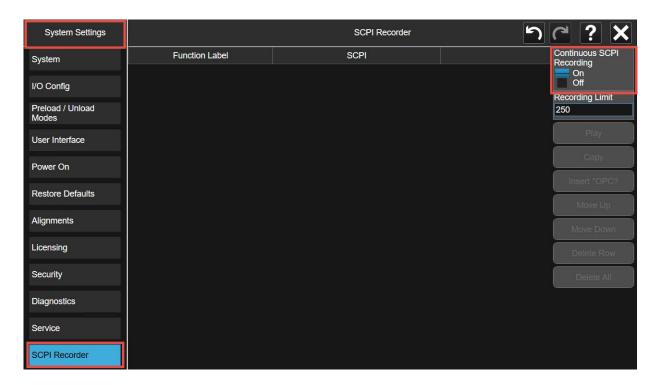


Select Copy to copy the current SCPI command string for further use.

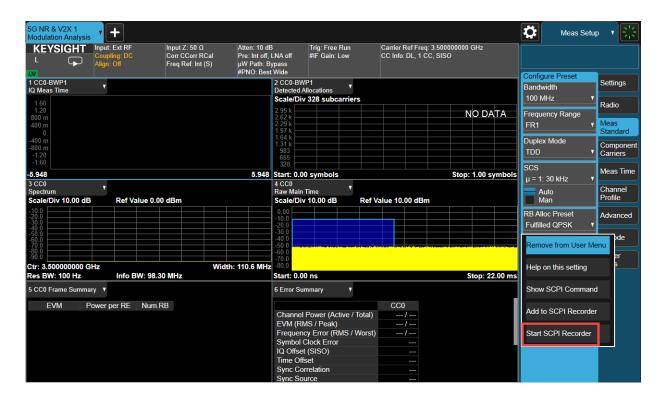
If you use Windows Remote Desktop or a VNC viewer with clipboard synchronization enabled, you can copy the SCPI command into the clipboard. This makes SCPI commands available on the fly via a simple copy/paste operation.

- Select **Help on this setting** to open the SCPI syntax document page.

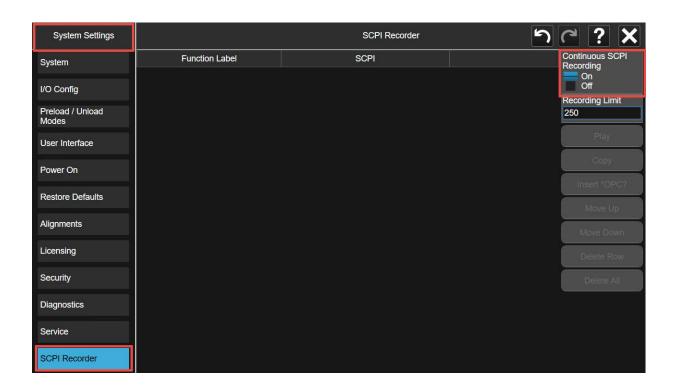
You will see the background information for that setting including allowed values, SCPI command and examples, and other useful information.



To Start Continuous SCPI Recording:

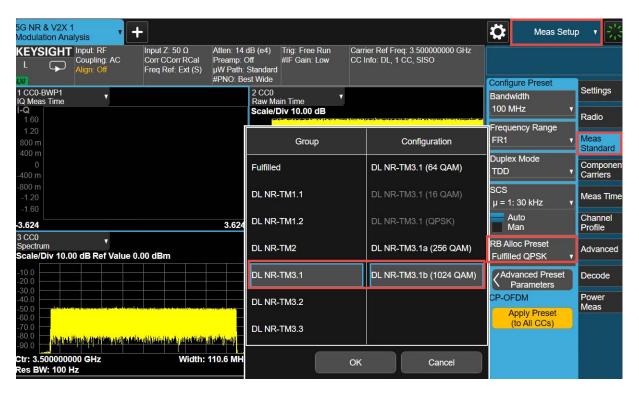

The SCPI Recorder supports an automatic mode of operation. In this mode, a series of manual operations can be added to the list automatically without any further user activity. You can start the recording process by enabling the Continuous SCPI Recording, then disable it to stop recording after completing all configuration steps. This is normally the best choice for fast and convenient SCPI list recording.

There are two ways to start continuous SCPI recording:


- From the System Settings > SCPI Recorder.

- From the context sensitive menu of the function key.

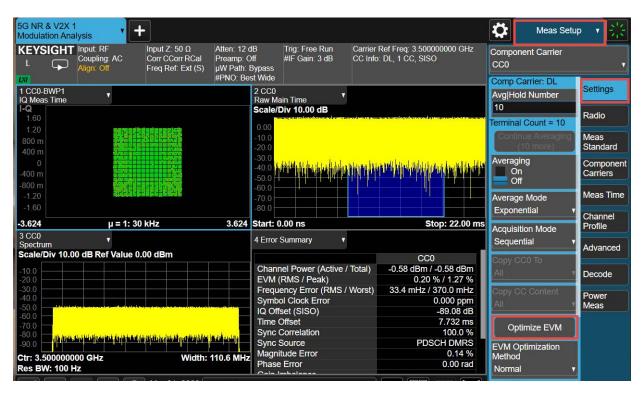
- 1. Select Mode Preset to set 5G NR V2X mode to a known state.
- 2. For this example, select the System Settings icon (Gear wheel on top right of the display) > SCPI Recorder > Continuous SCPI Recording On. Close the System Settings window by selecting the "X" at the top of the window.

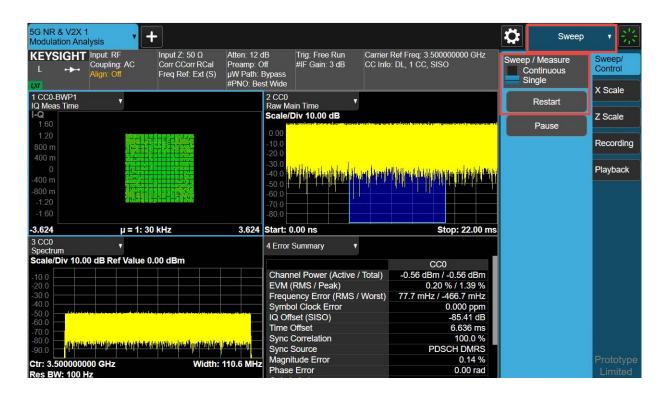

3. Select Mode/Meas > 5G NR &V2X Mode > Modulation Analysis Measurement > Normal View > OK.

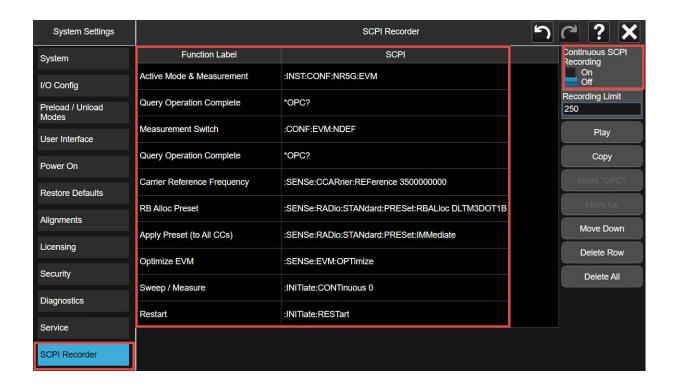
NOTE

If accessing the instrument via a Remote Desktop connection, select the Screen tab (at the top left of the display) to open the Mode/Measurement/View Selector window.

4. Select Frequency > Carrier Reference Frequency and set to 3.5 GHz.


 Select Meas Setup > Meas Standard > RB Alloc Preset > DL NR-TM3.1 > DL NR-TM3.1b (1024QAM) > OK.

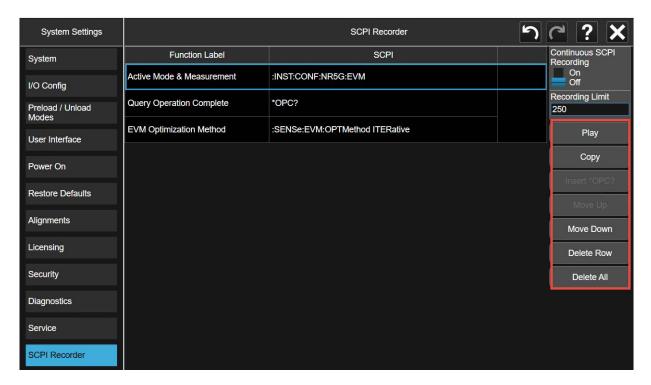

6. Select Apply Preset (to All CCs).


7. Select the **Settings** side tab and select **Optimize EVM**.

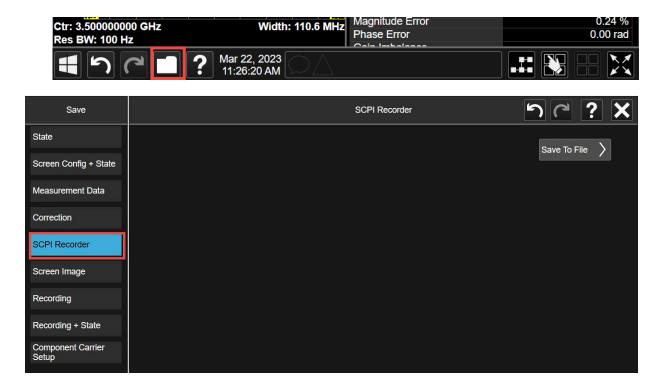
8. Select Sweep > Sweep/Meas to Single > Restart.


 Select the System Settings icon (Gear wheel on top right of the display) > SCPI Recorder > Continuous SCPI Recording Off. Close the System Settings window by selecting the "X".

Manual Recording, Edit, Save and Play Functions

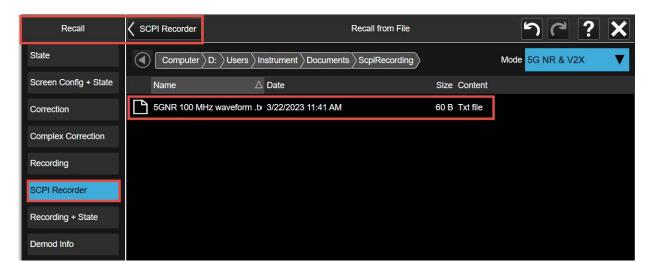

The SCPI Recorder supports manual recording of a list consisting of SCPI commands comprising any number of parameter variations when Continuous SCPI Recording is off. In this mode, the user can decide which SCPI commands should be added to the SCPI list. This mode of recording is helpful if a certain configuration must be figured out, and you only want to record the final, correct settings and not every variation or keystroke.

 Touch and hold the any function for at least one second on the touch screen or if using a mouse pointer and right click to open the menu and select Add to SCPI Recorder. For this is example we will change EVM Optimization Method to Iterative.



2. To view the newly added command, go to **System Settings** icon (Gear wheel on top right of the display) > **SCPI Recorder**.

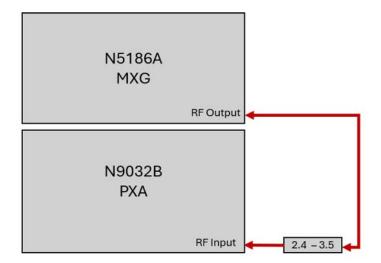
From the SCPI Recorder provides several operations to edit the SCPI list you created. You can Play, Copy, Move Up or Down the selected SCPI command, Delete the command, or Delete All the commands.


The recorded SCPI list can be exported as a script file in .TXT format via the Save/Recall function at the bottom of the main window.

There are two ways to playback SCPI commands. One is recalling from a script file. And another one is pressing the 'Play' button in 'SCPI Recorder' tab view.

Recalling SCPI script file allows you to play back a series of operations in the same or another instrument, which helps you setup complex measurement scenarios quickly and easily.

To recall the SCPI recording, go to Save/Recall and navigate to the saved file.


Using Real-time Spectrogram Streaming (Option RRT) for N9032B and N9042B

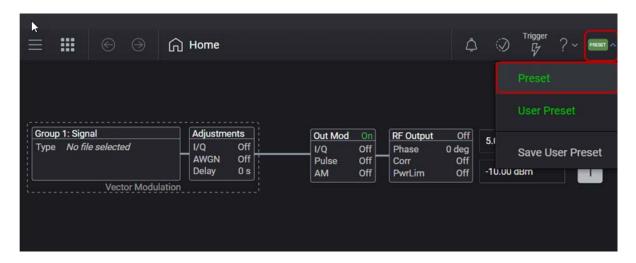
Overview

Real-time Spectrogram Streaming combines the high-speed capture capabilities of RTSA equipped analyzers with the convenient flexibility of post-processing, allowing you to set their desired measurement parameters such as: center frequency, span, and acquisition time and then stream the resulting gapless spectrogram data to binary files. This improves the storage capacity of captured slices by 8x. The saved binary files can be used for customized post-processing. A MATLAB program (RTSA viewer) is provided to introduce users to post process analysis of the saved binary files. In this procedure you will learn how to set up Real-time Spectrogram Streaming and how to use the Rtsa viewer to view your captured spectrogram slices.

Equipment:

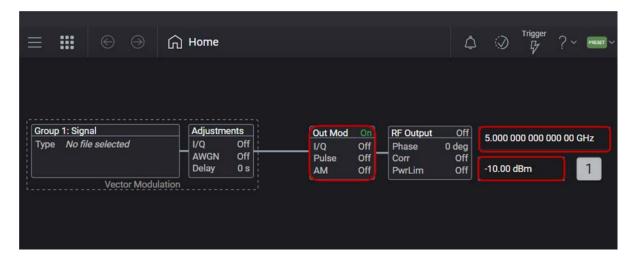
- N5186A MXG or M9484C VXG
- N9032B PXA or N9042B UXA with Option RRT
- 3.5 mm female to female cable
- For a mmWave signal analyzer, 2.4 mm female to 3.5 mm male adaptor For a μ Wave signal analyzer, Type N male to 3.5 mm female

Using the 3.5 mm cable and the 3.5 mm to 2.4 mm (or Type N) adaptor, connect the MXG/VXG RF output to the RF input of the PXA/UXA.

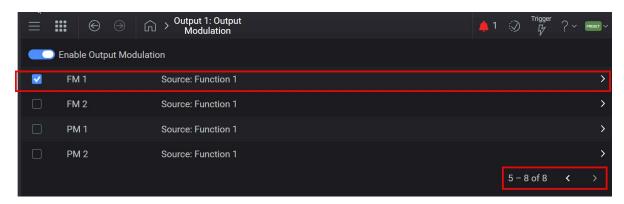

On the MXG/VXG Signal Generator:

Start by generating a sweeping frequency modulated signal for its distinctive formation in the spectrogram screen. Note: This is purely an example for simplicity and demonstrative purposes.

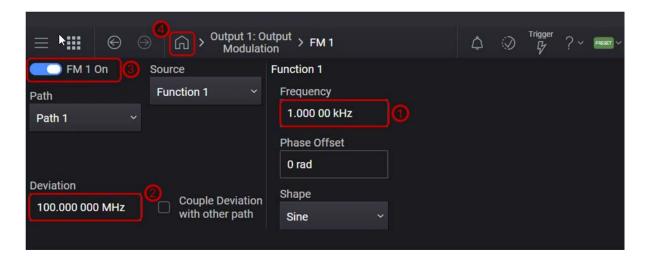
NOTE


This is purely an example for simplicity and demonstrative purposes. This process can be used for other signals such as 5G NR and WLAN.

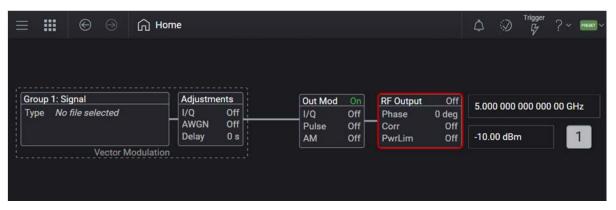
1. Select **Preset** > **Preset** to set the instrument to a known state.

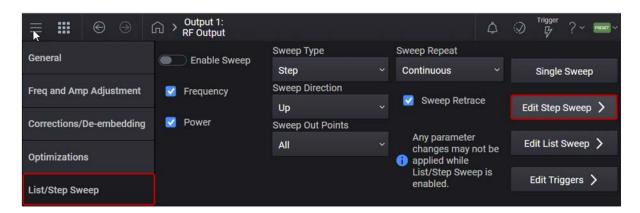

2. Set Frequency to 5 GHz and Power to -10 dBm.

These values are coupled to CW Frequency and Total Power (RMS) in the corresponding RF Output Block.

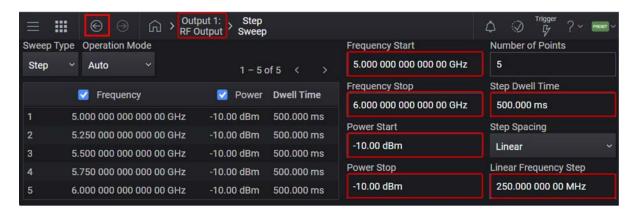


3. Select the Out Mod block to open.

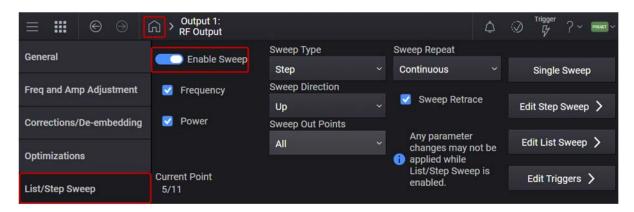

4. In the Output Mode window, select the right arrow at the bottom of the display to select choices 5-8, then select the FM 1 arrow at the far left side of the window.


- 5. In the Output Modulation FM 1 window, set:
 - Frequency to 1 kHz
 - Deviation to 100 MHz
 - Toggle FM 1 on
 - select the **Home** icon at the top of the screen

6. Select the RF Output block.



- 7. In the RF Output block, set:
 - List/Step Sweep tab
 - Edit Step Sweep



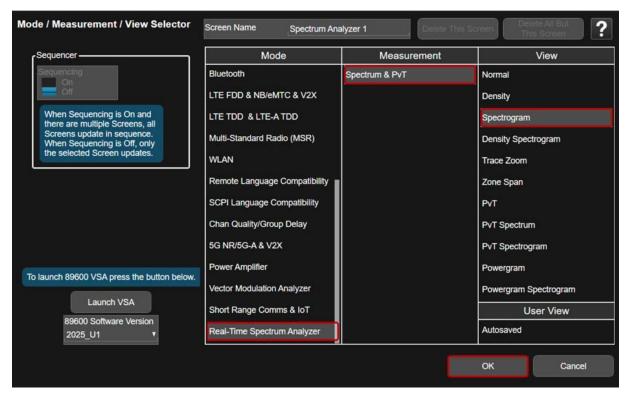
- 8. In the Step Sweep window, set:
 - Frequency Start to 5 GHz
 - Frequency Stop to 6 GHz
 - Power Start to -10 dBm
 - Step Dwell Time to 500 ms
 - Linear Frequency Step to 250 MHz


- select the **Back** arrow to return to Output 1: RF Output.

9. Select List/Step Sweep >toggle Enable Sweep to turn on.

10. Select the Home Icon and turn RF Output On.

On the PXA or UXA Signal Analyzer:


Now that the signal has been created, we can use RTSA with Option RRT to capture the signal into bin files.

 Select Mode/Meas > Real-Time Spectrum Analyzer Mode > Spectrum & PvT Measurement.

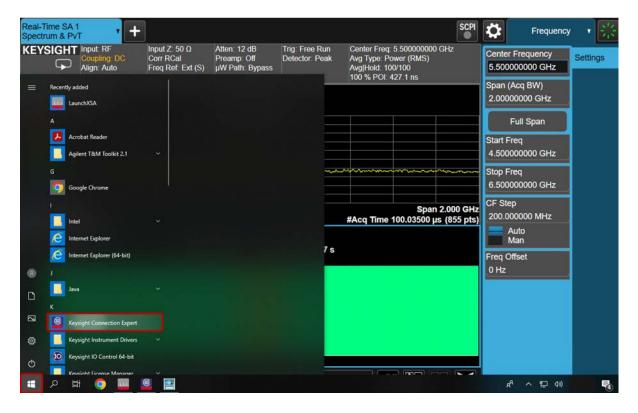
NOTE

If accessing the instrument via a Remote Desktop connection, select the Screen tab (at the top of the display) to open the Mode/Measurement/View Selector window.

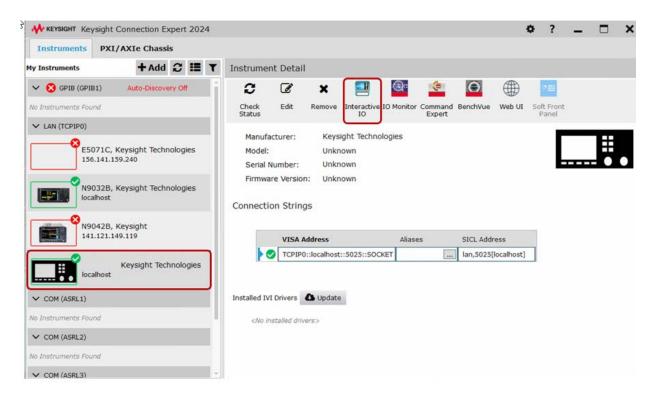
- 2. Select **Mode Preset** to set Real-time Spectrum Analyzer mode to a known state.
- 3. Select Mode/Meas > Real-Time Spectrum Analyzer Mode > Spectrum & PvT Measurement > Spectrogram View.

4. Select Frequency and set Center Frequency to 5.5 GHz and Span to 2 GHz.

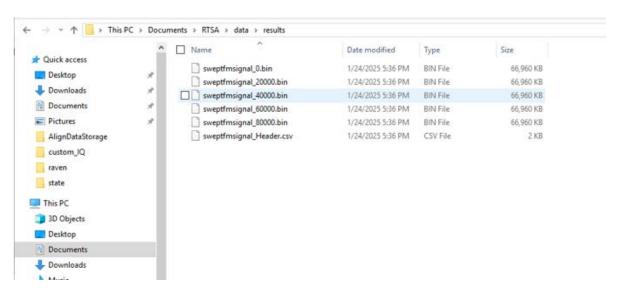
Notice the acquisition time is preset to 30 ms and how changing the acquisition time affects the spectrogram.



5. On the lower right area of the Spectrum window, select **Acq Time** and change to $100 \mu s$.

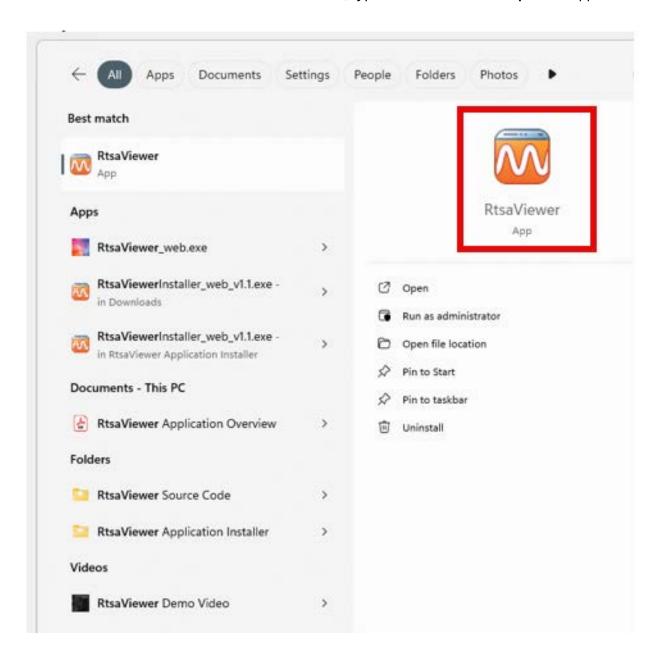

Notice how the FM signal is now resolved.

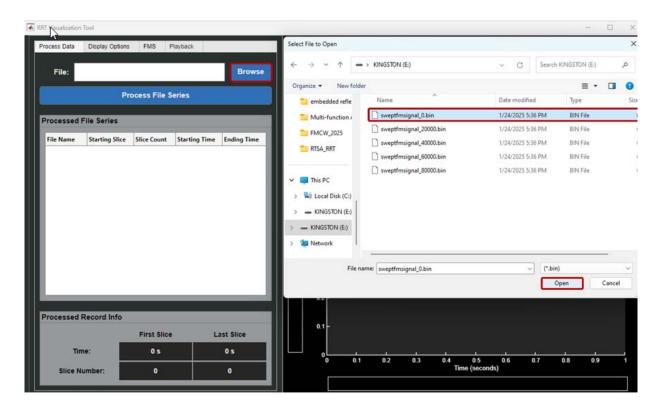
6. At the bottom of the display, select the **Windows** icon > **Keysight** Connection Expert.


7. In the Keysight Connection Expert window's left pane, select **Keysight Technologies localhost** and then **Interactive IO**.

- 8. In the **Command** area, type in the following commands:
 - STR:TYPE FINite > Send Command
 - STR:TYPE? > Send Command
 - STR:LENGth 100,000 > Send Command
 - STR:LENGth? > Send Command
 - STR:FNAMe "sweptfmsignal" > Send Command
 - STR: FNAMe? > Send Command
 - STR:STARt > Send Command

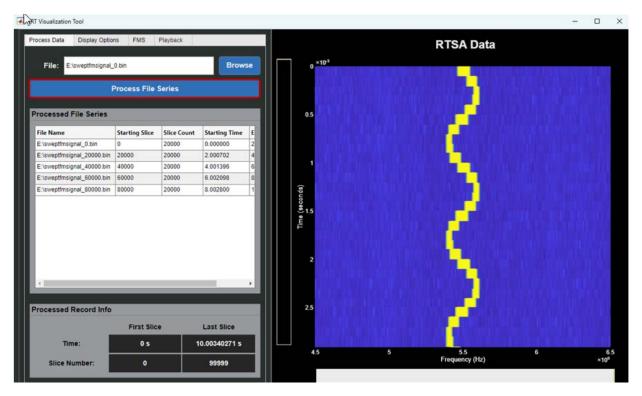
Once the Start command is sent, the analyzer will execute the number of iterations and store the resulting bin file in Documents > RTSA > data > results.


9. From the bottom of the X-series app, select Windows File Explorer and navigate to Documents > RTSA > data > results.


These bin files can now be uploaded to the RtsaViewer for processing and analysis. You can open RtsaViewer locally on the analyzer or transfer the files to another PC equipped with the RtsaViewer.

Using the Rtsa Viewer

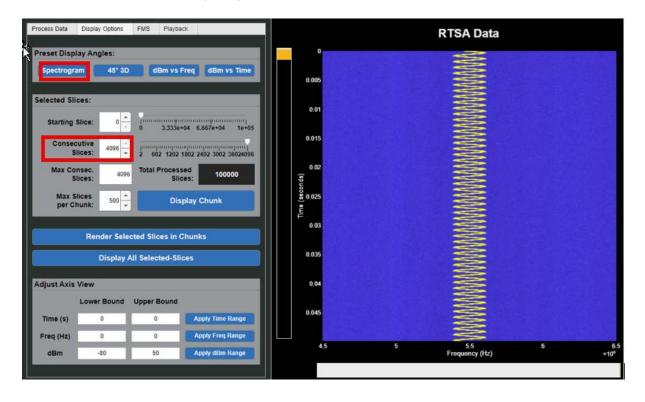
1. In the Windows search bar, type RtsaViewer and Open the application.


2. In the RtsaViewer, select Browse and navigate to your bin files. (Documents > RTSA > data >results). Select sweptfmsignal_0.bin > Open.

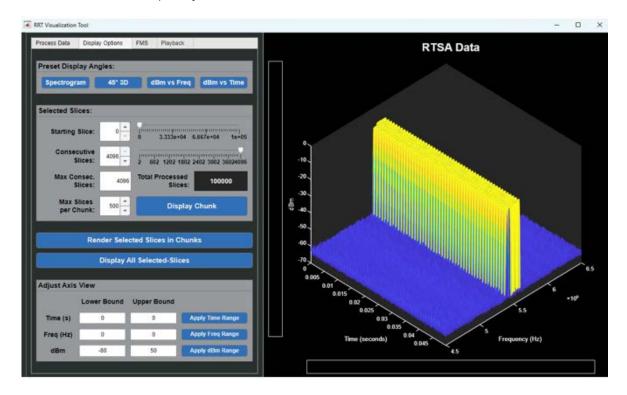
NOTE

The RRT Visualization Tool window may be hidden by the X-apps display. If you cannot see the visualization tool, select **Alt** > **Tab** to position it in front of the X-apps display.

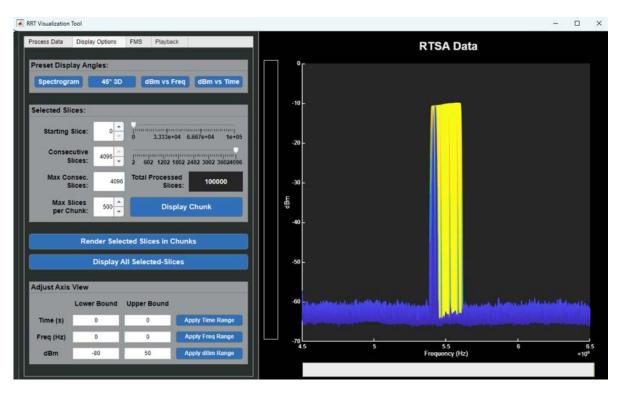
3. Select Process File Series to generate the file table.

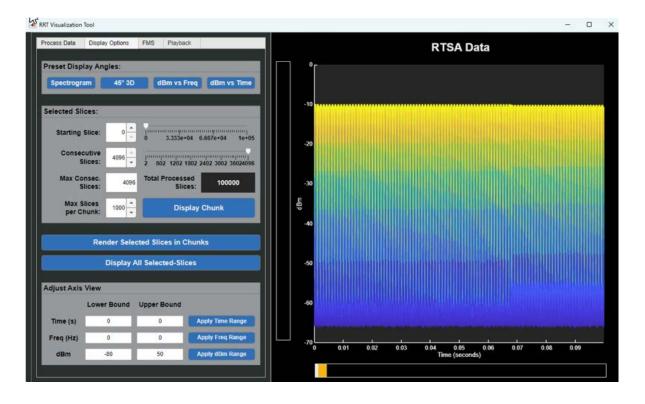

4. Select **Display Options** and set Consecutive Slices to **4096** to view the sames displays as shown in the pictures below.

Display Option Settings

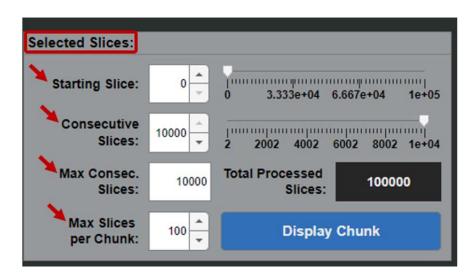

The **Display Options** tab contains settings to customize the display.

Preset Display Angles Area

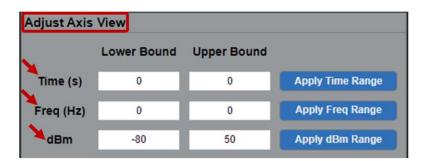

 Spectrogram View - plots the selected slices with axes of time in seconds and frequency in Hz.


 45° 3D View - plots the selected slices on a 45-degree rotated, three-dimensional plot with axes of power in dBm, time in seconds, and frequency in Hz.

 dBm vs Freq View - plots the selected slices with axes of power in dBm and frequency in Hz, showing the power distributed over the spectrum.



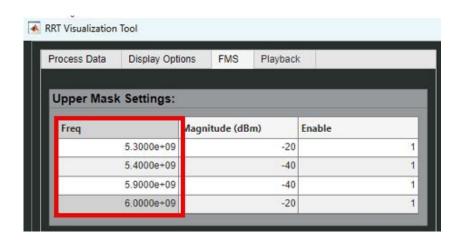
dBm vs Time View - plots power in dBm over time in seconds.


Selected Slices Area

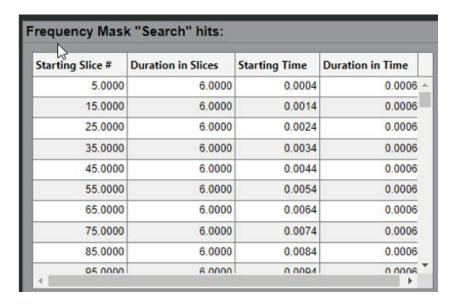
The Selected Slices menu has adjustable settings including Starting Slice, Consecutive Slices, Max Consecutive Slices, and Max Slices per Chunk. Adjusting these settings allows for complete control of the signal slices you want to view.

Adjust Axis View

The Adjust Axis View can be used to alter the Axis of the viewable plot in time, frequency, and power without affecting the Selectable Slices settings.

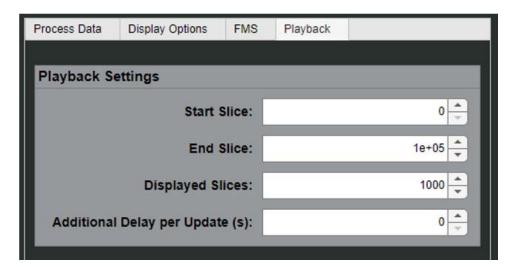

FMS Tab

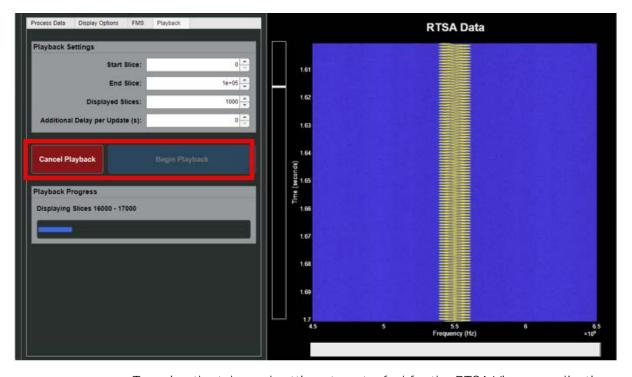
The FMS tab allows you to isolate signals by specifying corner bounds of an upper mask, then selecting **Run FMS**. Any signal considered inside the mask will be shown in the **Frequency Mask "Search" hits** table. While the upper mask includes a default of 4 bounds, mask bounds may be added or removed by right clicking the Upper Mask Settings table.


To render and display specific events, highlight the FMS hit you wish to see plotted. The example program's display will update to render the capture portion including the signal that triggered the mask (not the isolated signal passing over the mask alone).

Additionally, at the bottom of the FMS tab, the Display of the Selected Event can be customized between three display options:

- Beginning shows the moment the signal entered the mask.
- Ending shows the moment the signal left the mask.
- Entire shows the full duration between when the signal entered and exited the upper mask
- 1. Set the Frequencies to 5.3 GHz, 5.4 GHz, 5.9 GHz, and 6.0 GHz.


2. Check for signals that are found using the mask.


Playback Tab

The Playback tab provides you with a quicker method for visually parsing data. Given a specified start and end slice within the uploaded capture, displayed slices (at a time), and desired additional delay per update in seconds, the playback feature will scroll through the provided range, rendering and

displaying Displayed Slices on the axes at a given time. This screen will then show for some latency + the desired additional delay before updating to the next screen; unlike rendered displays generated through Display Options, rendering is cleared the moment it leaves the display.

To begin Playback, select the **Begin Playback**. Playback will continue until completion, regardless of the tab you may be on. If for any reason you wish to stop the playback, select **Cancel Playback**, which is only available during an active playback. You may monitor the playback's progress relative to your uploaded capture through the loading bar.

Try using the tabs and settings to get a feel for the RTSA Viewer application.

Other X-Series Signal Analyzer Measurements
Using Real-time Spectrogram Streaming (Option RRT) for N9032B and N9042B

Conclusion

Option RRT allows you to record RTSA spectrogram slices for post capture processing. The option comes with an example program (RTSA viewer) that extracts the spectrogram data from the bin files that are created from recording. You can create your own applications or build off of RTSA viewer to perform in depth signal processing.

Additional Resources

Application note: Real-Time-Spectrogram-Streaming.pdf

5 Custom Modulation Measurements

This section includes the following topics:

- "Using PathWave E7608APPC to Create a Waveform File then Automatically Configure the Analyzer to View the Results" on page 150
- "Using the N5186A MXG as an Embedded Reflectometer" on page 156

Custom Modulation Measurements
Using PathWave E7608APPC to Create a Waveform File then Automatically Configure the Analyzer to View the Results

Using PathWave E7608APPC to Create a Waveform File then Automatically Configure the Analyzer to View the Results

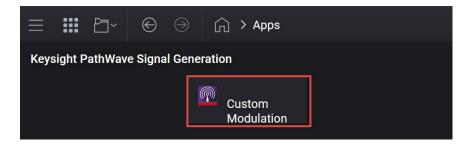
PathWave software tools can be used to create, download, and playback waveforms through the MXG.

This example shows you how to create and analyze a 16QAM using the embedded PathWave software and then automatically configure the analyzer to make the measurement.

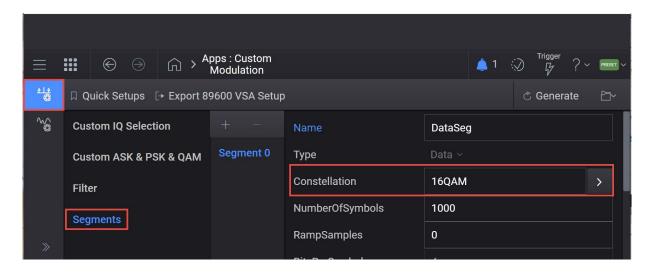
NOTE

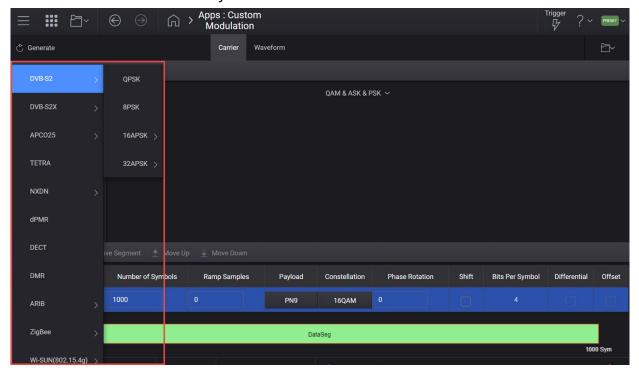
The MXG must have the E7608APPC Custom Modulation license installed and Signal Analyzer Version 2023 A.36.xx or later.

On the MXG:


- 1. Select **Preset** > **Preset** to set the MXG to a known state.
- 2. In the Output area, set Frequency to 4 GHz and Power to 0 dBm.

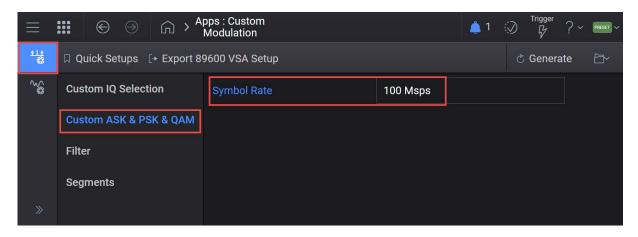
3. Select the Apps block to open the mode selection panel.


4. Select **Custom Modulation** to enter the custom modulation application.

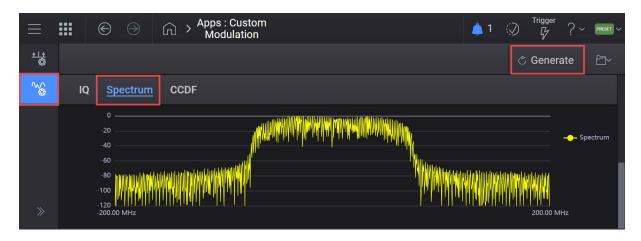

5. In the Custom Modulation setup, select the **Carrier** tab.

Custom Modulation Measurements
Using PathWave E7608APPC to Create a Waveform File then Automatically Configure the Analyzer to View the Results

We will use the default 16QAM constellation for this example.



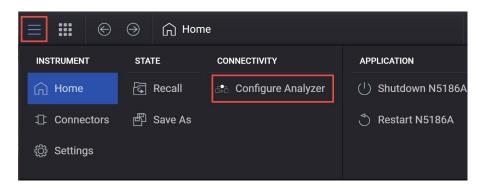
TIP Use Quick Setups for convenient saving and loading of common configurations. Quick Setups are factory supplied configurations and cannot be deleted by users.


Custom Modulation Measurements
Using PathWave E7608APPC to Create a Waveform File then Automatically Configure the Analyzer to View the Results

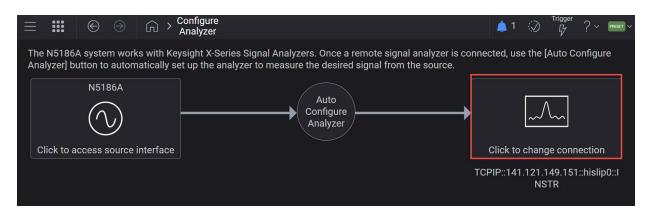
6. In the left pane, select **Custom ASK & PSK & QAM** and set Symbol Rate to **100 Msps**.

7. Select the Waveform tab > Generate.

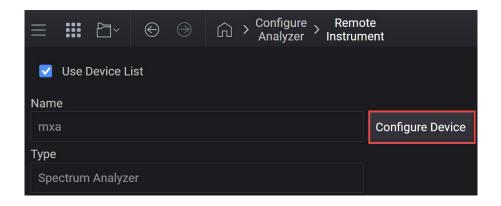
Scroll down to the bottom half of the display and select **Spectrum** to view the Waveform.


8. Select the **Home** icon and set RF Out to **On** by selecting the numbered channel indicator switch.

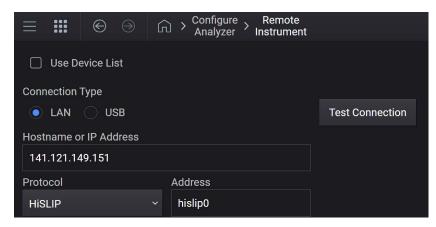
This enables the RF Out for the indicated channels, in this case Channel 1 if using a multi-channel MXG.



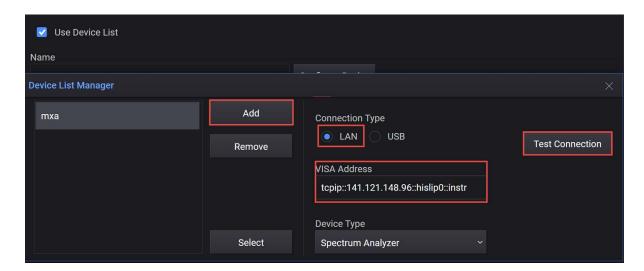
Setup Auto Configure Analyzer


1. Select the System menu (triple bar tab at the top left of the window) and select **Configure Analyzer**.

2. In the Configure Analyzer setup, click on the Remote Signal Analyzer block (on far right) to setup the communication channel to the Keysight X-Series Signal Analyzer.

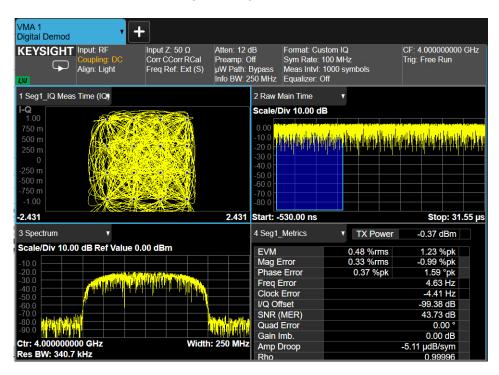

3. Select the Use Device List checkbox > Configure Device

Custom Modulation Measurements


Using PathWave E7608APPC to Create a Waveform File then Automatically Configure the Analyzer to View the Results

Alternatively, you can just enter the device information for a one time use. The Use Device List allows you to set up more than one Spectrum Analyzer to be used for a channel's Auto Configuration.

- **4.** In the Device List Manager, select **Add** and enter a name for your X-Series Signal Analyzer:
 - Set Connection Type to LAN
 - Enter the VISA Address of the analyzer.
 - Test Connection


Select the Info icon (Bell shaped icon at top right of the display) to view the connection status.

5. Select the Back Arrow and select **Auto Configure Analyzer** to send the MXG settings to the analyzer.

6. View the results on the signal analyzer.

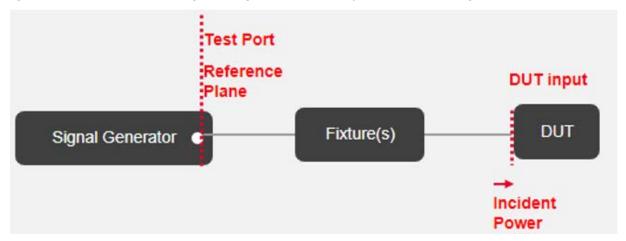
Using the N5186A MXG as an Embedded Reflectometer

Traditionally Keysight signal generators, such as the N5182B MXG, have automatic level control (ALC) which works great for RMS power across time and temperature. The ALC is a closed loop system with feedback from a power detector. A challenge with this approach is maintaining amplitude accuracy when the generated signal is wide-band and or high crest factor. The ALC does not compensate for phase flatness or delay. Keysight's N5186A MXG implements a new approach that guarantees amplitude accuracy by aligning across frequency and temperature along with advanced temperature control compensation. Compensation includes amplitude, phase, and delay.

A common source of linear error is caused by mismatch of the fixture and device under test (DUT). By default, the reference plane is at the test port of the MXG and assumes a 50 ohm load is connected, which in many cases is not how the test is set up. The effect of linear error affects absolute amplitude accuracy, amplitude frequency response (flatness), phase frequency response (phase dispersion or deviation from linear phase), and IQ impairments. By using the N5186A's embedded reflectometer, the reference plane can be moved from the source's RF output to the input of the DUT while also generating a match corrected signal. The embedded reflectometer supports features such as fixture characterization, DUT S11 measurements, corrections/fixture de-embedding, and DUT match correction (by generating a match corrected wave). This measurement example will provide detailed steps and features of the embedded reflectometer for N5186A MXG.

NOTE

The MXG must have the E7608APPC Custom Modulation license installed and Signal Analyzer Version 2024 A.38.xx or later.


Test Setup

Definitions

- DUT Input: Targeted plane that the user desires to stimulate the DUT.
- Reference Plane: The endpoint for the MXG's calibration.
- Fixtures: All electrical components in the signal path between the DUT and the MXG.
- Incident Power [dBm]: The incident power the user desires to stimulate the DUT.

In general, a DUT is connected to a fixture that is connected to the test port of the MXG.

Figure 5-1 Block diagram of general test setup when connecting a DUT to an MXG

Materials

	Material	Part Number	Quantity
1	MXG	N5186A MXG - (Any channel configuration is acceptable)	1
2	Signal Analyzer	N9032B PXA - (Any Keysight Signal Analyzer is acceptable)	1
3	ECal Module	N7555A - (See "Supported ECal Modules" on page 161)	1
4	DUT	Mini Circuits ZX60-83LN-S+	1
5	RF Attenuator	Mini Circuits 15542 6 dB	1
6	3.5 mm Coax Cable	Any quality male-to-male connector is acceptable	2
7	USB 5 V Connector	Used to power the DUT	1

Figure 5-2 Number 1 on material list: N5186A MXG (Any channel configuration is acceptable)

Figure 5-3 Number 2 on material list: N9032B PXA (Any Keysight Signal Analyzer is acceptable)

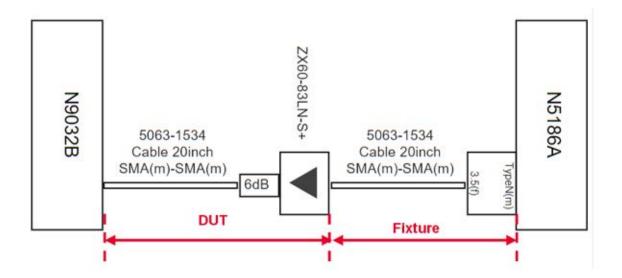
Figure 5-4 Number 3 on material list: N7555A ECal Module (See "Supported ECal Modules" on page 161)

Figure 5-5 Number 4 on material list: Mini Circuits ZX60-83LN-S+

Figure 5-6 Number 5 on material list: Mini Circuits 15542 (6 dB attenuator)

Figure 5-7 Number 6 on material list: SMA 3.5mm male to male coaxial cable $\ensuremath{\mbox{$\sc N$}}$

Figure 5-8 Number 7 on material list: USB powered 5V connector


Supported ECal Modules

	Model	Description
N755xA Series 2-port Economy ECal mo	dules	
_	N7550A	DC to 4 GHz
	N7551A	DC to 6.5 GHz
AND HE PROCESS	N7552A	DC to 9 GHz
	N7553A	DC to 14 GHz
- A D	N7554A	DC to 18 GHz
	N7555A	DC to 26.5 GHz
509xD Series 2-ports RF ECal module		
_	85091D	DC/300 kHz to 9 GHz
# State # State # State # State	85092D	DC/300 kHz to 9 GHz
	85093D	DC/300 kHz to 9 GHz
*#= · <u>2 · </u> =##	85094D	DC/300 kHz to 9 GHz
	85096D	DC/300 kHz to 9 GHz
	85098D	DC/300 kHz to 7.5 GHz
	85099D	DC/300 kHz to 6 GHz
3509xC Series 2-ports RF ECal module		
	85091C	300 kHz to 9 GHz
	85092C	300 kHz to 9 GHz
Briggs and	85093C	300 kHz to 9 GHz
A Milateria	85096C	300 kHz to 3 GHz
A STATE OF THE PARTY OF THE PAR	85098C	300 kHz to 7.5 GHz
	85099C	300 kHz to 3 GHz
1469xD Series 2-ports Microwave ECal n	nodule	
_	N4690D	DC/300 kHz to 18 GHz
Vanc	N4691D	DC/300 kHz to 26.5 GHz
	N4692D	DC/10 MHz to 40 GHz
	N4693D	DC/10 MHz to 50 GHz
	N4694D	DC/10 MHz to 67 GHz
2	N4696D	DC/300 kHz to 18 GHz
N443xD Series 4-ports ECal modules		
	N4431D	DC to 13.5 GHz
4 P. P.	N4432D	DC/300 kHz to 18 GHz
o December 1	N4433D	DC /300 kHz to 26.5 GHz

Configure the Test Setup

Part 1

Begin setting up the equipment to take the first measurement, measuring the DUT without fixturing or calibration.

Setup the DUT:

CAUTION

To prevent shorting and damage to DUT, ensure USB 5V connector is unplugged when attaching power and ground clips to DUT.

1. Connect the 6 dB attenuator to the DUT's output port.

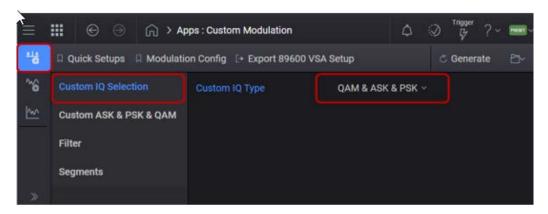
2. Attach the red clip to the +5 VDC pin and the black clop to the GND pin.

3. Connect the MXG RF output to the input port of the DUT. Connect the signal analyzer RF input to the other side of the attenuator. The figure below shows the RF connection to the MXG and the signal analyzer.

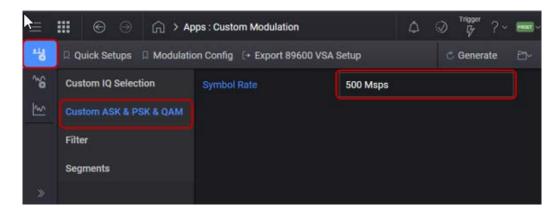
4. Connect the USB 5V to any of the available USB ports on either the analyzer or generator.

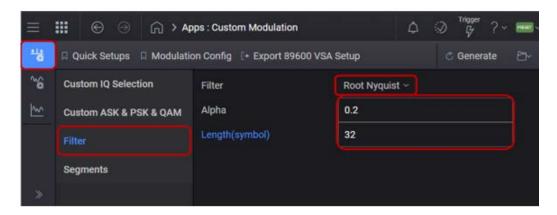

Generate the Signal:

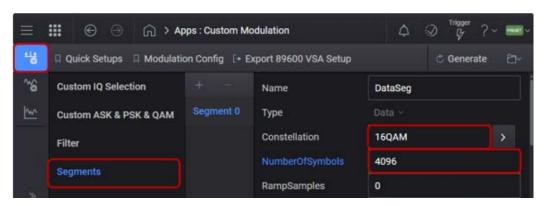
The signal used in this demonstration is a 500 Msps symbol rate, 4096 Symbol, 16 QAM signal.

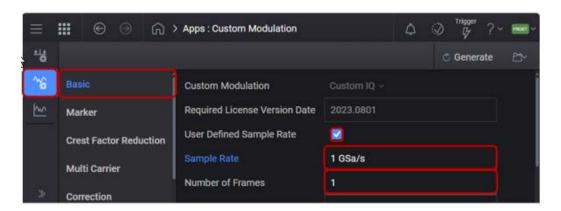

1. On the MXG, select **Preset** > **Preset** to set the instrument to a known state.

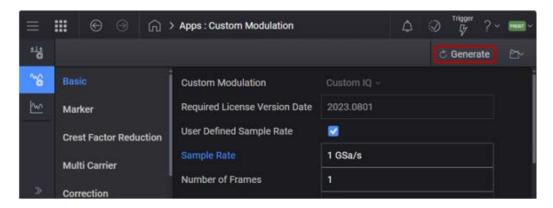
2. On the MXG select the Apps menu > Custom Modulation.



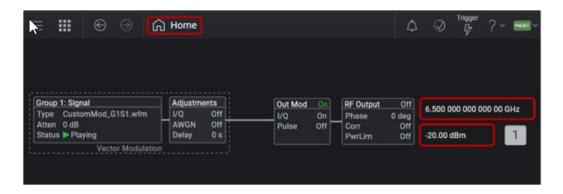

3. In the Carrier menu (left pane) select Custom IQ Selection > Custom IQ Type > QAM & ASK & PSK.


4. Select Custom ASK & PSK & QAM > Symbol Rate to 500 Msps.


5. Select the **Filter** tab > set Filter to **Root Nyquist** > Alpha **0.2** > Length (symbol) **32**.


6. Select **Segments** > Constellation **16QAM** > NumberOfSymbols **4096**.

- 7. Select the **Waveform** menu (left pane) and select:
 - Basic tab
 - Enable User Defined Sample Ratio
 - Sample Rate to 1 GSa/s
 - Number of Frames to 1


Select Generate.

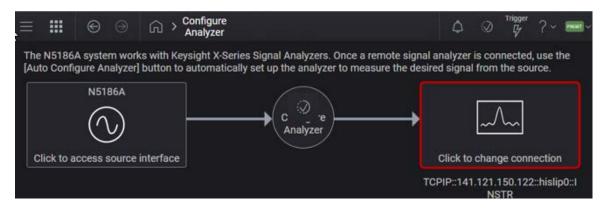
8. Scroll down to the bottom half of the display and select **Spectrum** to view the Waveform.

9. Select the **Home** icon and set Frequency to **6.5 GHz** and Power to **-20 dBm**.

10. Set RF Out to **On** by selecting the numbered channel indicator switch.

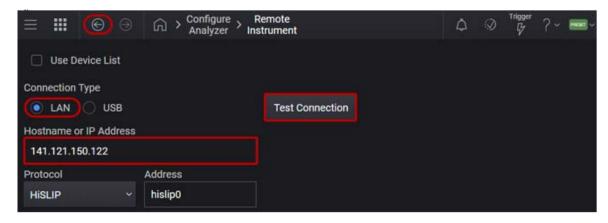
This enables the RF Out for the indicated channels, in this case Channel 1 if using a multi-channel MXG.

Set up the Signal Analyzer:


To characterize the DUT we need to demodulate the signal we are sending through it.

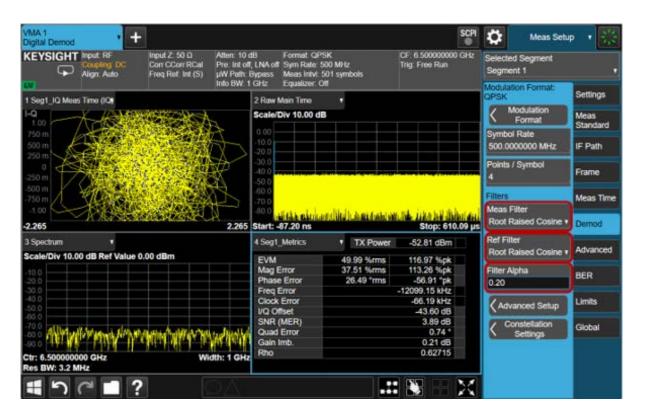
The following steps can be done quickly by taking advantage of the Configure Analyzer function on the MXG. The MXG and Signal Analyzer must be on the same LAN network to use the Configure Analyzer function to work. If this criterion is met, follow these three steps to quickly configure your Signal Analyzer.

1. Select the **System** menu > **Configure Analyzer**.



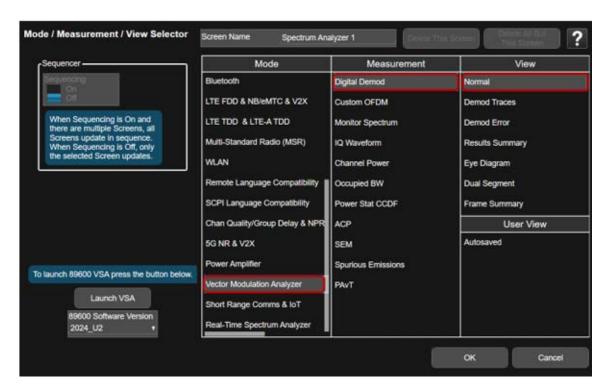
2. Select Click to change connection.

- 3. In the Remote Instrument window,
 - set Connection Type to LAN
 - Enter the IP address of the signal analyzer
 - select Test Connection to verify proper connection


 select the navigation button (left arrow) to return to the Configure Analyzer window.

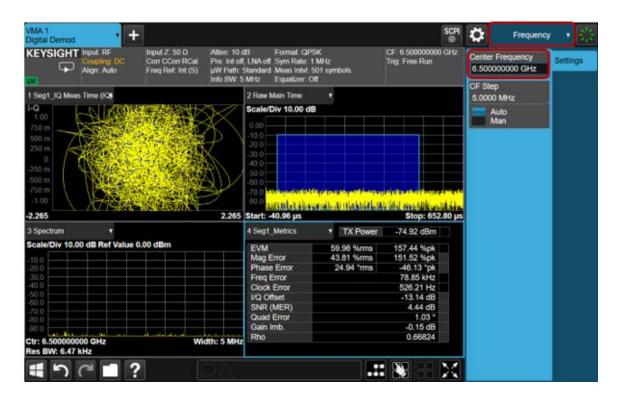
4. Select Auto Configure Analyzer to send the MXG settings to the analyzer.

5. View the results on the signal analyzer.

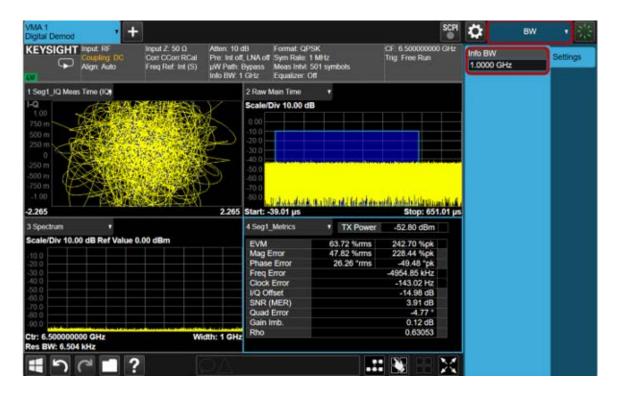

Manually Configure the Signal Analyzer

When not using Auto Configuration, follow these steps to manually configure the Signal Analyzer.

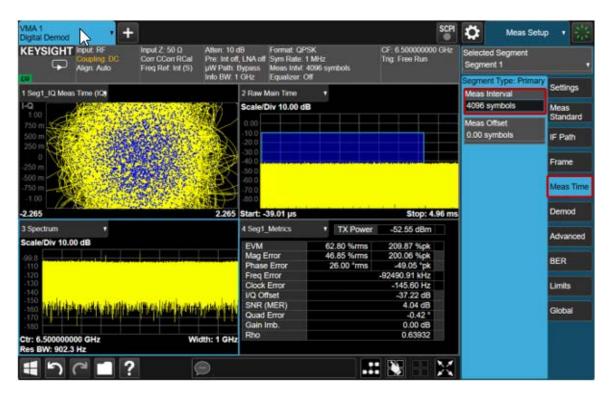
From the Menu Panel (on the top right of the display), select Mode/Meas > Vector Modulation Analyzer mode > Digital Demod > OK.

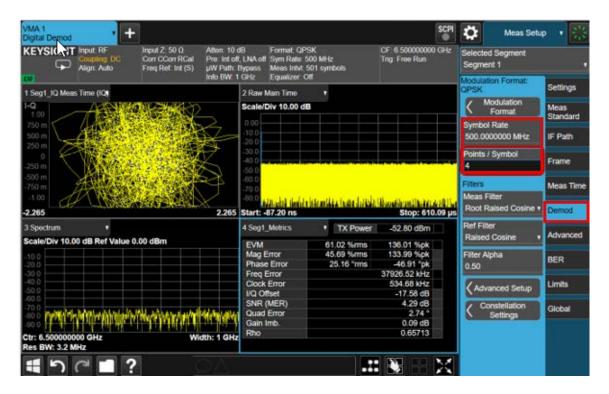

NOTE

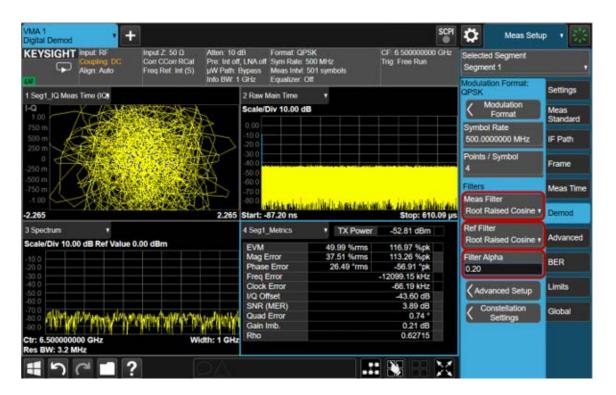
If accessing the instrument via a Remote Desktop connection, select the Screen tab (at the top of the display) to open the Mode/Measurement/View Selector window.

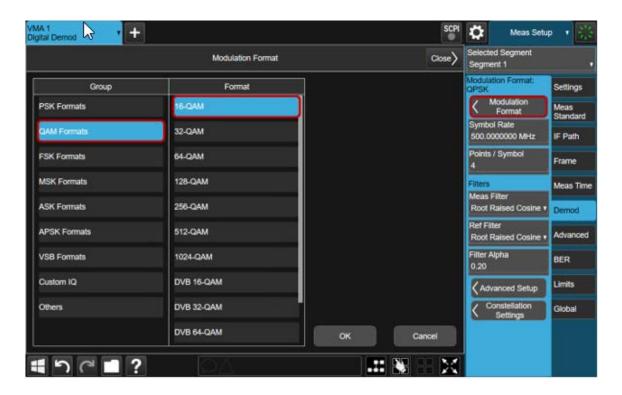


2. Select **Mode Preset** to set the Vector Modulation Analyzer mode to a known state.


3. Select Frequency and set Center Frequency to 6.5 GHz.

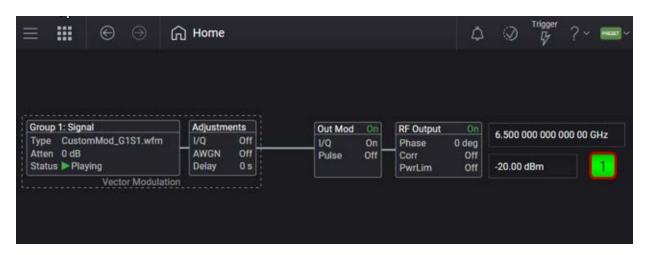

4. Select BW > and set Info BW to 1 GHz.


5. Select Meas Setup > Meas Time > set Meas Interval to 4096 symbols.


6. Select **Meas Setup** > **Demod** > set Symbol Rate to **500 MHz** and Points/Symbol to **4**.

7. Set Meas Filter to Root Raised Cosine > Ref Filter to Root Raised Cosine > Filter Alpha to 0.2.

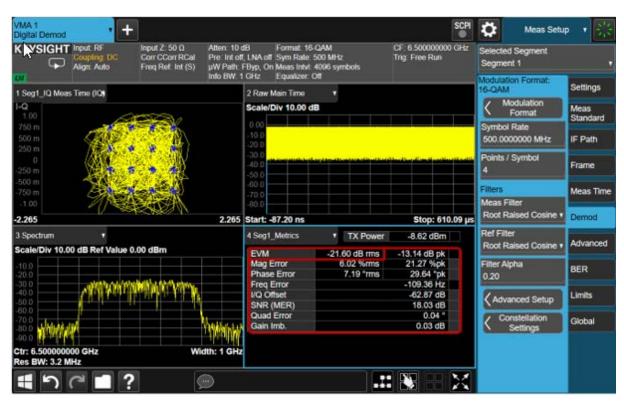
8. Select Modulation Format to open the Modulation Format window and then select QAM Formats > 16 QAM. Select OK to close the Modulation Format window.

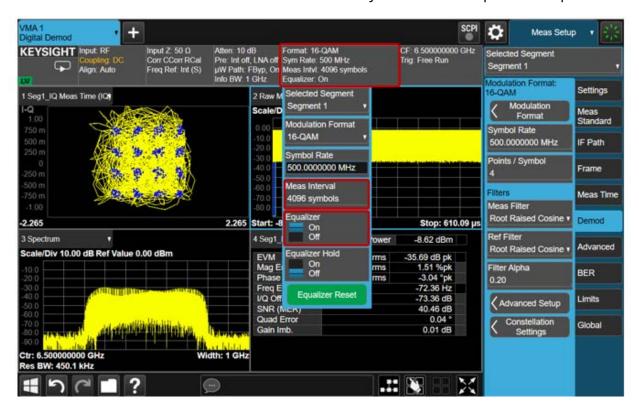


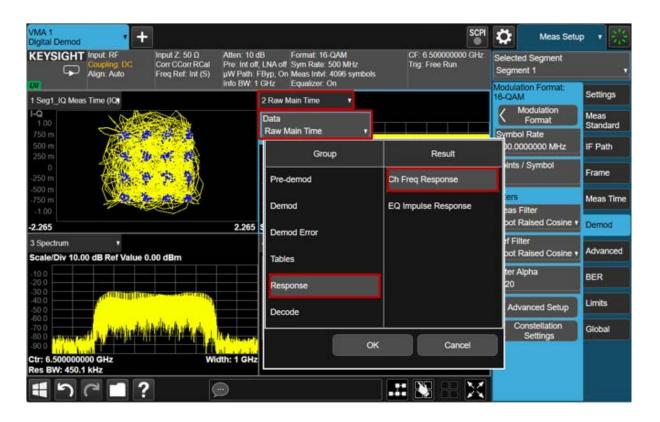
Take the DUT Measurement


Now that the source is set up to demodulate the 16QAM signal, you can measure the unequalized EVM in dB and channel response in both phase and magnitude. This will give a baseline for how the DUT preforms without fixturing and calibration.

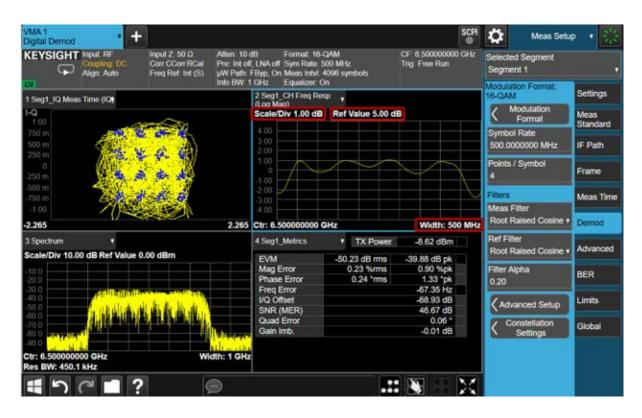
1. On the **MXG**, set RF Out to **On** by selecting the numbered channel indicator switch.


This enables the RF Out for the indicated channels, in this case Channel 1 if using a multi-channel MXG.

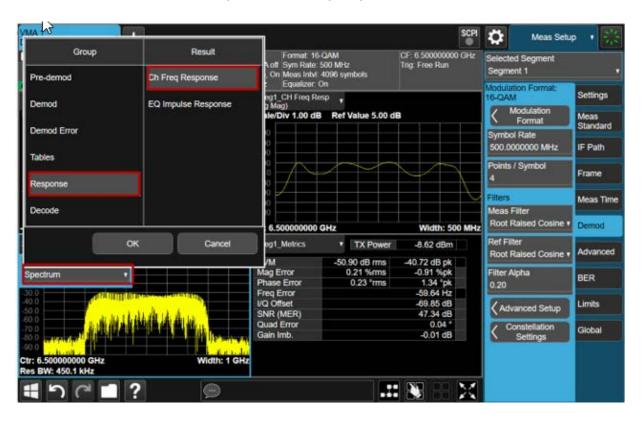

On the Signal Analyzer, select Meas Setup > Demod tab > Advanced
 Setup and set Report EVM DB to On. Close the Advanced Setup Window.


3. Record the EVM in dB. For this example, 21.60 dB rms.

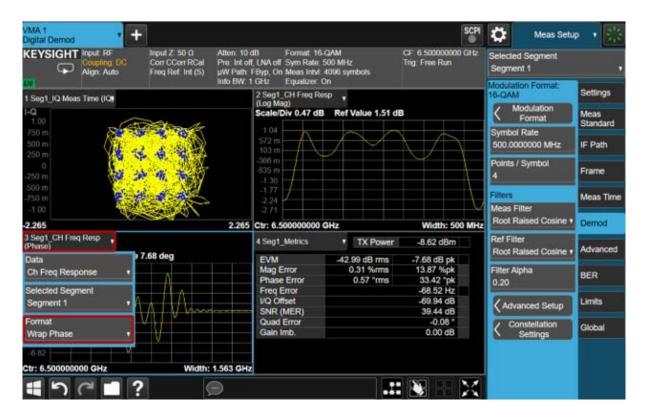
4. At the top of the display, select the **Equalizer** menu and toggle Equalizer **On**. The Meas Interval was already set to 4096 in a previous step.



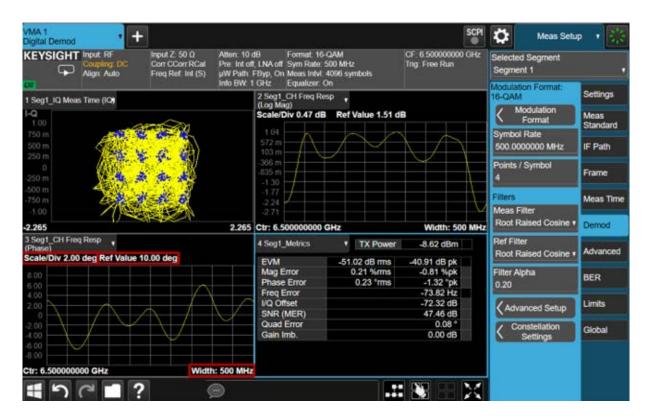
5. On Measurement window 2 (top right), select the dropdown and select Data > Response > Ch Freq Response > OK.



- 6. On Measurement window 2, set.
 - Scale/Div to 1.00 dB
 - Ref Value to 5.00 dB


Width to 500.000 MHz

7. Select Measurement window 3 (bottom left) dropdown menu and select Data > Response > Ch Freq Response > OK.



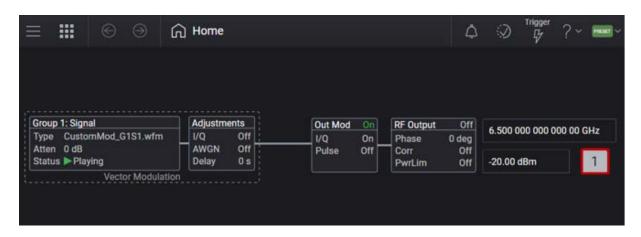
8. On Measurement Window 3, select **Format** > **Wrap Phase** to measure the phase response in Measurement window 3.

- 9. On Measurement Window 3, set:
 - Scale/Div to 2.00 deg
 - Ref Value to 10.00 deg

Width to 500 MHz

Part 2

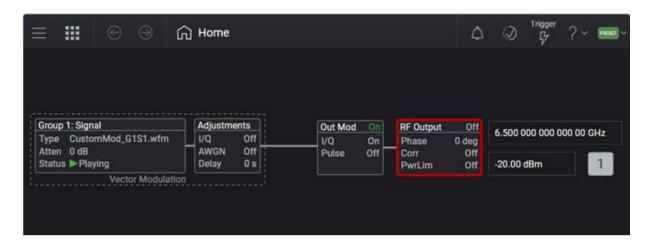
Use the ECal module to de-embed the cable or test fixture.


CAUTION

 Do not set the power over ECal's damage levels. Refer to the data sheet for your specific ECal module.

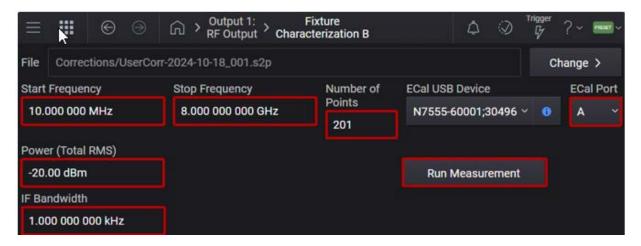
Characterize the Fixture

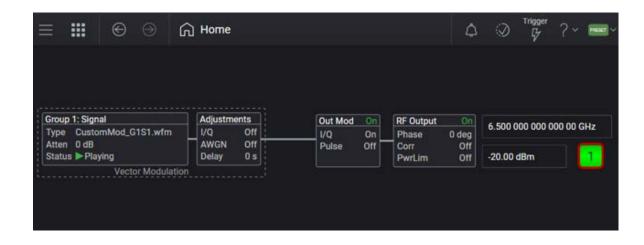
To characterize the fixture, an ECal module is used to generate an .s2p file of the fixture.


1. On the MXG, turn RF Output Off.

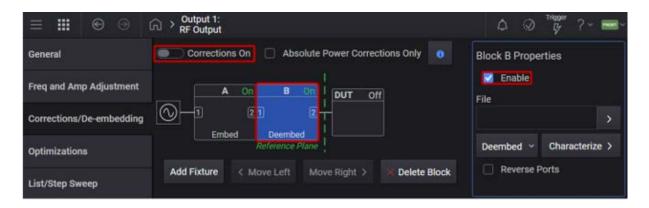
2. Disconnect the input of the DUT and connect the same fixture to Port A of the ECal module.

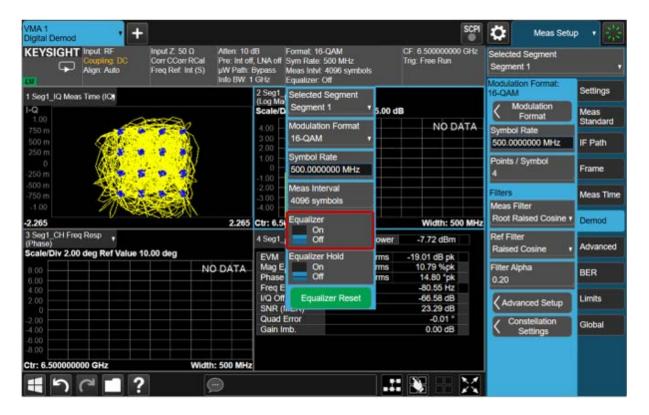
3. Select the RF Output block to open.

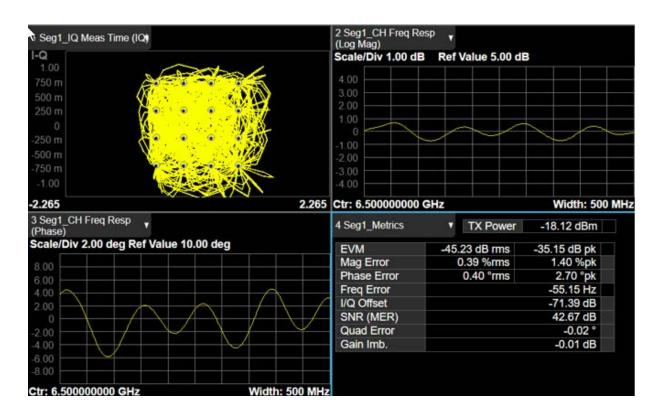

4. In the RF Output dialog box, select the Corrections/De-embedding tab > Add Fixture > Block B > Characterize.


5. Set:

- Start Frequency to 10 MHz
- Stop Frequency to 8 GHz
- Number of Points to 201
- ECal Port to A
- Power (Total RMS) to -20 dBm
- IF Bandwidth to 1 kHz

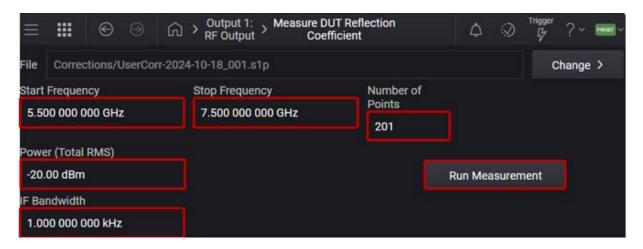

- Run Measurement


- **6.** When the measurement is complete, Disconnect the fixture from the ECal module and connect the fixture back to the input of the DUT.
- 7. Select the Home icon and turn RF On.

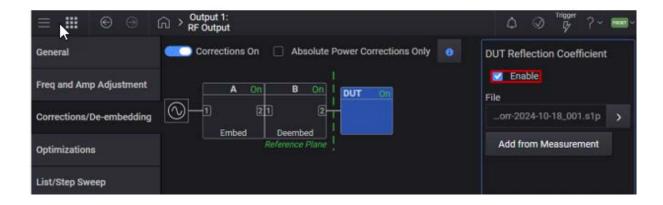

8. Select the RF Output block > Corrections/De-embedding tab > Corrections On > Enable.

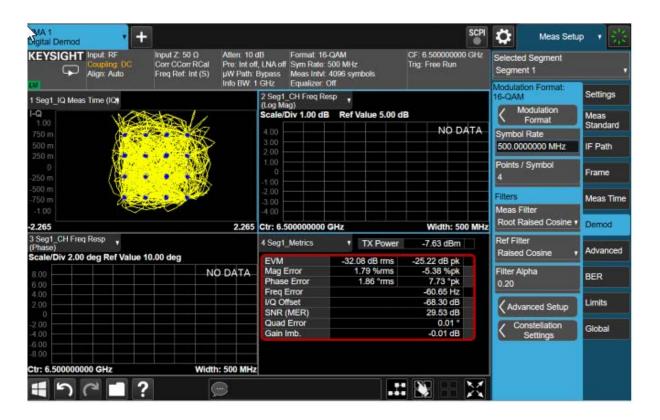
9. On the Signal Analyzer, at the top of the display, select the **Equalizer** menu and toggle Equalizer **Off** to take and unequalized measurement of the EVM with fixture de-embedding enabled.

10. Toggle the Equalizer to **On** and select **Equalizer Reset** to take the equalized measurement.

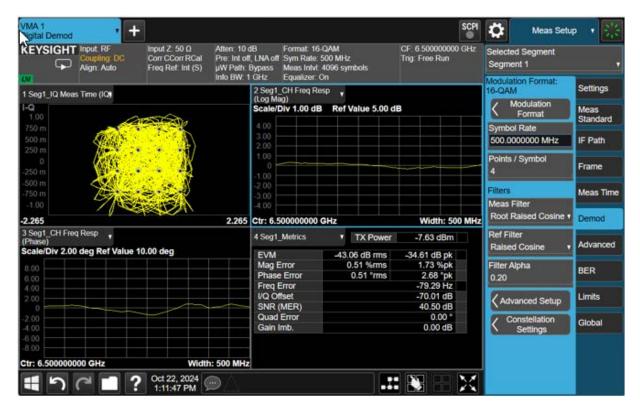

Generate an 1.s1p File

Start by generating an .s1p file using embedded reflectometer to enable DUT match correction and take unequalized EVM measurements and channel response for magnitude and phase. Compare results to the two previous DUT measurements.


On the MXG, select RF Output block > Corrections/De-embedding tab > DUT block > Add from Measurement.


- 2. To generate the .s1p file, set:
 - Start Frequency to 5.5 GHz
 - Stop Frequency to 7.5 GHz
 - Number of Points to 201
 - Power (Total RMS) to -20 dBm
 - IF Bandwidth to 1 kHz
 - Run Measurement

3. Select the **Back** arrow icon to return to the previous window and ensure **Enable** is selected.



4. Take an unequalized measurement of the EVM with fixture de-embedding and DUT match corrections enabled.

5. Toggle the Equalizer to **On** and select **Equalizer Reset** to take the equalized measurement.

Custom Modulation Measurements
Using the N5186A MXG as an Embedded Reflectometer

Summary

The embedded reflectometer allows easy fixture characterization without the use of a Vector Network Analyzer. By characterizing the fixture, corrections can be applied to move the reference plane to the input of the DUT. The embedded reflectometer can also be used to preform DUT match correction. By making an S11 measurement, the reflection can be characterized and therefore corrected, allowing for better channel response. In this demonstration you can see the increase in performance in real time. In this particular setup the measured unequalized EVM goes from -21.60 dB rms to -25.84 dB rms when characterizing the fixture and applying corrections. A further increase in performance can be seen from preforming DUT match correction. In this example, the unequalized EVM goes down to -32.08 dB rms. With both correction types applied the unequalized EVM improves by 10.48 dB rms. This increase in performance is also embodied in the channel response. The channel response in magnitude and phase goes from 3 dB peak-to-peak for magnitude and 10 degrees peak-to-peak for phase to ~1 dB peak-to-peak for magnitude and ~3 degrees peak-to -peak for phase after applying corrections. Using the embedded reflectometer to characterize a fixture and a DUT improves station-to-station reproducibility allowing for greater confidence in test results.

Custom Modulation Measurements Using the N5186A MXG as an Embedded Reflectometer

This information is subject to change without notice.
© Keysight Technologies 2025
Edition 1, February 2025
N5186-90003