


BATTERY CELL VOLTAGE GENERATOR SS7081-50

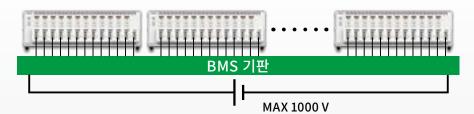




# 배터리 셀을 모의 . 고정밀도 플렉시블한 발생기

- 12대의 전원, 전자부하, DMM을 1대에 집약
- 업계 탑클래스 전압 출력 정밀도, 전압•전류 측정 정밀도
- 안전하고 간단한 배터리 셀 모의 기능
- 부속 PC 앱을 이용한 모의와 제어
- 국제 표준 교정기관에 의한 안심하고 확실한 지원

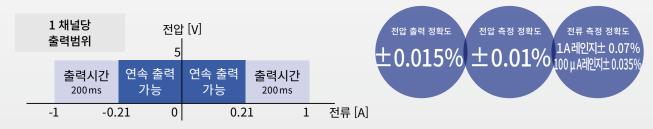



# SS7081-50 고정밀도 출력 · 고정밀도 측정, 플렉시블한 발생기

배터리 셀 전압 발생기 SS7081-50 은 1 대에 12 셀분의 DC 전원, 전압·전류계, 모의 릴레이가 내장되어 있습니다.

또한, SS7081-50 을 증설해 각 채널을 직렬로 연결하면 1000 V 까지 대응합니다.

## ● 12대의 전원, 전자부하, DMM을 1대에 집약

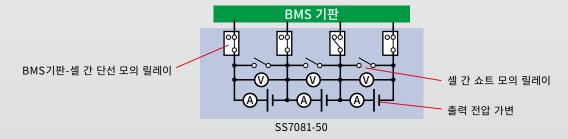

- 12 ch/대로 채널별 셀 거동을 모의
- 1000 V (최대 17대) 까지의 셀 직렬 환경을 구축



5 V/ch × 200 ch = 1000 V (SS7081-50을 17대 연결)

# ● 업계 탑클래스의 전압 출력 정밀도, 전압 • 전류 측정 정밀도

- 전압 출력 0 V~5 V로 셀 거동을 모의
- 2상한의 출력 전압 -1 A~1 A로 셀 밸런싱




미소전류 고정밀도 측정 100 μ A 레인지

• BMS 전원 OFF 상태에서의 소비전류 (암전류) 확인 • BMS 대기상태의 소비전류 (대기전류) 확인

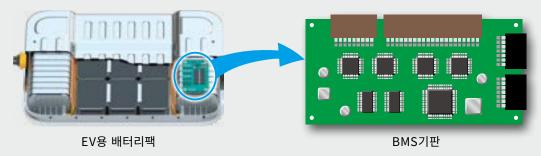
## ● 간단하고 안전한 모의 기능

• 셀 연결단자의 셀 간과 BMS-셀 간에 단락/단선용 릴레이를 탑재하여 전압 이상, 셀 단자 간 쇼트, BMS기판-셀 간 단선을 모의



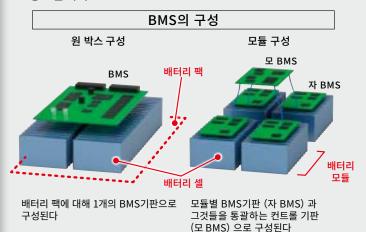
## ● 국제 표준 교정기관에 의한 안심 • 확실한 지원

- ISO/IEC17025의 인정을 받은 시험소·교정기관에서 증명서류를 취득할 수 있습니다
- JCSS 인정 시험소·교정기관의 증명서류를 취득할 수 있습니다


※인정범위 안에서 사용자가 지정한 교정 포인트에 대해 교정을 실시합니다. 제품 사양 전체범위에서 교정하는 것은 불가능합니다.

# 이차전지의 운용에 필요한 배터리 매니지먼트 시스템 (BMS)

#### BMS란?


이차전지를 안전하고 효율적으로 운용하기 위해서는 배터리 셀 단품의 상태 (용량, 전압•전류•전력, 온도, 충방전 상태, 각 셀 간 밸런싱 등)을 실시간으로 감시, 제어할 필요가 있습니다.

이 감시·제어하는 시스템을 "배터리 매니지먼트 시스템:BMS"이라 부릅니다.



#### BMS의 구성과 BMS 고정밀도 평가의 필요성

BMS의 성능에 따라 이차전지 운용 효율이 크게 달라집니다. 따라서 BMS의 품질을 확보하기 위한 신뢰성 평가 시험이 중요합니다.



#### BMS 고정밀도 평가의 필요성 리튬 이온 배터리 동작영역 10%~90%의 경우 고정밀도 BMS기판 저정밀도 BMS기판 0000 측정 정밀도 ±1% 측정 정밀도±5% 과충전 영역 89%~ 과충전 영역 85%~ UP 성능 사용 가능 영역 사용 가능 영역 11%~89% 15%~85% 과방전 영역 ~15% 과방전 영역 ~11%

## BMS의 신뢰성 평가 시험

BMS 의 신뢰성이 확실하게 보증되지 않으면 배터리에 기인해 발생하는 중대한 사고와 고장으로 발전할 수 있어 더욱 고 - 신뢰성 시험이 필요해집니다 . 하지만 실제 배터리를 사용해 시험할 경우 다음과 같은 문제가 발생합니다 .

● 안전성 : 배터리 취급에 주의가 필요함 ( 액 누설, 발열, 발화, 파열, 감전의 우려가 있음)

● 신뢰성 : 개체차, 열화 등에 의한 성능 변화 ● 이상 감지: 이상 상태 등의 조건 재현성이 어렵다

실제 배터리를 이용한 평가시험

따라서 실제 배터리나 개별 전원일 때보다 더 안전하고 정밀한 평가 시험이 요구됩니다.

배터리 셀 전압 발생기 SS7081-50 은 1 대로 12 셀의 배터리 전압의 모의환경을 구축할 수 있어 BMS 신뢰성 평가시험의 이러한 과제를 해결합니다.





SS7081-50의 모의환경을 이용한 평가시험

# 부속 PC 앱을 사용한 시뮬레이션 기능\*

## 샘플 프로그램에 의한 모의

부속 PC 앱에서 SS7081-50 을 제어할 수 있습니다.

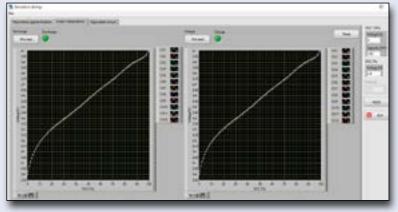
예를 들어, 배터리 임피던스 미터 BT4560 이나 케미컬 임피던스 아날라이저 IM3590 등에서 취득한 실측 데이터를 활용해 배터리 셀의 충방전 동작을 모의할 수 있습니다.



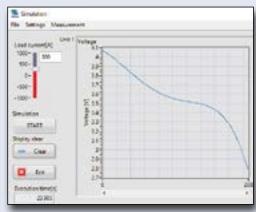
# 충방전 시뮬레이션

전류 적산값 - 전압 특성 , 배터리 용량 - 배터리 전압 특성에 의해 SOC 를 추정할 수 있습니다 . 이 SOC 추정에 의해 BMS 마이크로 컴퓨터에 실장한 SOC 추정 프로그램이 적절하게 처리되고 있는지를

확인할 수 있습니다.


시뮬레이션에서는 사전에 충방전 시험장치에서 취득한 각 파라미터의 실측값을 활용합니다.

SS7081-50 에 실측값을 투입하고 충방전 전류값을 자동 가변함으로써 실사용상황에 가깝게 동작시킬 수 있습니다 .

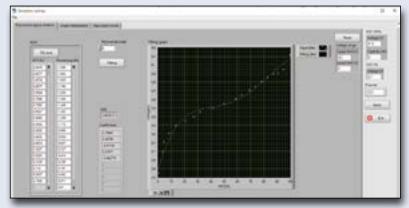

## 2가지 시뮬레이션 방식: 【선형보간법】 과 【Curve-fitting법】

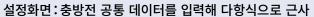
데이터 플롯 수가 적을 경우, 출력전압의 경사가 급변해 SS7081-50 에서 매끄러운 방전 출력이 불가능하기 때문에 특성 곡선을 근사시키는 방식입니다.

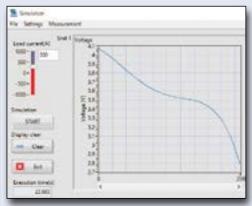
## 【선형보간법】



설정화면:충방전에서 서로 다른 데이터를 입력





배터리 간 전압 모의 결과


### ※ 사용조건:본체, PC앱 둘 다 버전이 2.50 이상일 것

#### 충방전 시뮬레이션

# 【Curve-fitting법】



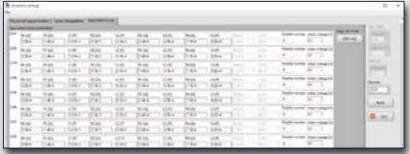




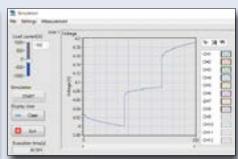
배터리 간 전압 모의 결과

# 등가회로 파라미터에 의한 과도 응답 시뮬레이션

BMS 마이크로 컴퓨터에 실장한 SOC 추정, SOH 추정 프로그램을 확인할 수 있습니다. SS7081-50 에 입력한 등가회로 모델에 대해 BMS 측에서 추정한 SOC, SOH 산출 결과를 확인합니다. 또한 BMS 가 이상 동작하지 않는 것도 함께 확인합니다.




배터리 등가회로




배터리 임피던스 미터 BT4560 (예)

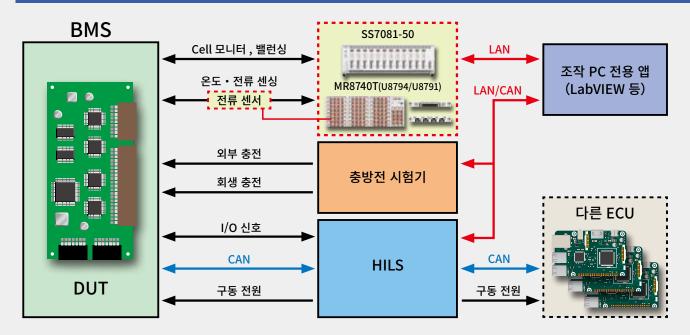
실측값 사용 가능 (등가회로 소프트웨어 Scribner Associates Inc. 제품 『ZView®』 \*\*을 사용하고 사전에 연산을 해둘 필요가 있습니다)



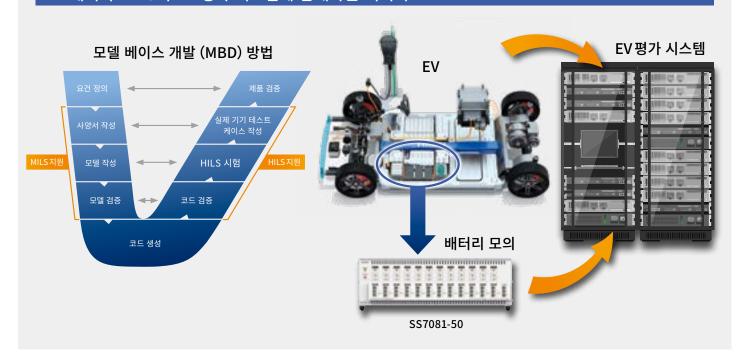
설정화면: 내부 임피던스 값을 채널별로 설정



배터리 과도 응답 모의 결과


# SS7081-50 의 적용 사례

# ■ 배터리 HILS\*1 시험환경에 대응 ※1 HILS: Hardware-In-the-Loop-Simulation


BMS 개발에서는 실물 성능 평가에서 가상 시뮬레이션 평가 =HILS 로 이행되고 있습니다. HILS 통괄 PC 에서 TCP-IP(LAN) 통신 커맨드로 SS7081-50 을 제어할 수 있습니다. \*\*2 (LabVEIW 드라이버 표준 부속) \*\* 2 CAN 통신을 희망하시면 별도로 상의해 주십시오

또한 , 메모리 하이코더 MR8740T+VIR 발생 유닛 U8794 와 결합하여 온도 모의 시험을 실시할 수 있습니다 .  $^{*3}$  \*  $^{3}$  희망하시면 별도로 상의해 주십시오

### 배터리 HILS 시험 시스템 구성



### 배터리 HILS의 EV 평가 시스템에 탑재하는 이미지



## ■ 단독 신뢰성 시험

### 시험환경을 간단 • 안전 • 고정밀도로 실현

#### 기존의 BMS 성능 평가 환경에서의 과제

#### 복수 셀 배터리 + 복수 전압계



- •배터리 취급에 주의가 필요
- 배터리 품질에 편차가 있다
- 배터리 성능 열화에 의해 측정 재현성에 주는 영향이 크다
- •검증 동작 조건을 만들어 내는 것이 어렵다

#### 1 대의 배터리를 저항 분압



- 배터리 취급에 주의가 필요
- •저항값 편차에 의한 측정 정밀도 악화
- 저항 분압에 의해 저항 가변 시의 전체 영향이 크다
- •검증 동작 조건을 만들어 내는 것이 어렵다

#### 보수 전원 + 보수 DMM



- •채널 수만큼 비용이 발생한다
- 각 기기의 제어 , 배선처리가 번잡해진다
- 각 기기의 유지보수가 매우 번거롭다

배터리 셀 전압 발생기 SS7081-50 으로



모든 과제를 해결!

# 다양한 분야에서 폭 넓은 용도로 활약











소형 모빌리티 로봇 비상용 전원 축전 시스템

### **사양** (정확도 보증기간 1년, 조정후 정확도 보증기간 1년)

| <b>^                                    </b> | 모증기간 1년,2                                              | 조성우 성확도 모증기간 1 년)                                                                                                                                                         |
|----------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 채널 수                                         | 12 채널                                                  |                                                                                                                                                                           |
| 최대 직렬 연결                                     | 최대 직렬 출력 전압 1000V 이하에서 본체 직렬 연결 가능                     |                                                                                                                                                                           |
|                                              | 직류 전압                                                  | 0.0000V ~ 5.0250V (전채널 독립)                                                                                                                                                |
| 출력범위                                         | 최대 출력 전류                                               | ± 1.00000A (전채널 독립) 210mA 이하이면서 -210mA 이상은 연속 출력 가능 210mA 보다 크거나 -210mA 보다 작은 경우는 연속 출력 제한*있음 ※연속 출력 제한 최대 출력 가능 시간 200ms 다음 출력까지의 시간 (참고값):5V 에서 1A 를 200ms 출력한 경우 5s 동안 |
| 측정범위                                         | 직류 전압                                                  | -0.00100V ~ 5.10000V                                                                                                                                                      |
|                                              | 직류 전류<br>(2 레인지 구성)                                    | ± 1.20000 A (1 A 레인지)<br>± 120.0000 μ A (100 μ A 레인지)                                                                                                                     |
| 적분시간                                         | 1PLC (50Hz 의 경우 20ms, 60Hz 의 경우 16.7ms) ×<br>스무딩 설정 횟수 |                                                                                                                                                                           |
| 전압 출력 정확도                                    | $\pm$ 0.0150 % of setting $\pm$ 500 $\mu$ V            |                                                                                                                                                                           |
| 전압 측정 정확도                                    | $\pm$ 0.0100 % of reading $\pm$ 100 $\mu$ V            |                                                                                                                                                                           |
| 전류 측정 정확도                                    | 1 A 레인지                                                | $\pm$ 0.0700 % of reading $\pm$ 100 $\mu$ A                                                                                                                               |
|                                              | 100 μ A 레인지                                            | $\pm$ 0.0350 % of reading $\pm$ 10 nA                                                                                                                                     |
| 정확도보증 온습도범위                                  | 23°C ± 5 °C , 80% RH 이하 (웜업 시간 30 분 이상)                |                                                                                                                                                                           |
| 전원                                           | 프리 전원 (AC 100V ~ 240V)                                 |                                                                                                                                                                           |
| 전원 주파수 범위                                    | 50 Hz/60 Hz, ± 2 Hz                                    |                                                                                                                                                                           |
|                                              |                                                        |                                                                                                                                                                           |

| 인터페이스 | LAN<br>통신 내용 : 통신 커맨드에 의한 설정 , 기기 상태 취득 , 측정값 취득 |  |
|-------|--------------------------------------------------|--|
| 외형 치수 | 약 430W × 132H × 483D mm, ±3 mm (돌기물 불포함)         |  |
| 질량    | 약 10.3kg, ± 0.5kg                                |  |
| 부속품   | 사용설명서 , 전원코드 , 랙 프레임 , PC 앱 디스크                  |  |

#### 부속 PC 어플리케이션

|      | · _ · · · · · · -         |                                                                        |  |
|------|---------------------------|------------------------------------------------------------------------|--|
|      | 항목                        | 내용                                                                     |  |
| 제어 . | 전압 발생                     | • ON/OFF/ 설정 저장 / 불러오기                                                 |  |
|      | 전압•전류 측정                  | ・전류 레인지 전환<br>・측정값 로깅 (CSV 파일 출력)                                      |  |
|      | 시퀀스                       | • CSV 파일 편집 / 파일 불러오기<br>•스텝 실행 / 연속 실행 / 정지                           |  |
|      | 그래프 표시                    | •측정값의 파형 표시<br>•화면 캡처 ( 이미지 파일 저장 )                                    |  |
| 모의   | 충방전 모의                    | ・선형보간법의 설정<br>・Curve-fitting 법의 설정<br>・충방전 시뮬레이션 실행<br>・충방전 전류값의 자동 가변 |  |
|      | 등가회로 파라미터에 의한<br>과도 응답 모의 | ・등가회로 파라미터 설정<br>・과도 응답 시뮬레이션 실행                                       |  |

동작환경: Windows 7 Service Pack1 이후 (Winsows 8 은 제외) 해상도 1920 × 1080 (Full HD) 이상

### 제품명: 배터리 셀 전압 발생기 SS7081



### 관련 제품



MEMORY HICORDER MR8740T



DIGITAL VOLTMETER UNIT U8991



VIR GENERATOR UNIT U8794

메모리 하이코더 MR8740T와 전용 유닛을 결합해 HILS 탑재의 온도 모의 시험환경을 구축할 수 있습니다



FLYING PROBE TESTER FA1240







FA1220-02



FA1220-11

중간 공정 검사에서 사용하는 인서킷 테스터 시리즈와 결합해 BMS기판의 양산 검사가 가능합니다 (최종 공정 수율 개선)

 $Note: Company\ names\ and\ Product\ names\ appearing\ in\ this\ catalog\ are\ trademarks\ or\ registered\ trademarks\ of\ various\ companies.$ 



www.hiokikorea.com 대표메일 info-kr@hioki.co.jp 서울사무소 서울특별시 강남구 역삼동 707-34 한신인터밸리 24 동관 1705 호

TEL 02-2183-8847 FAX 02-2183-3360

대전사무소 대전광역시 유성구 테크노 2 로 187, 314 호 (용산동, 미건테크노월드 2차)

TEL 042-936-1281 FAX 042-936-1284

대구사무소 대구광역시 동구 동대구로489 대구무역회관 7층 708호 TEL 053-752-8847 FAX 053-752-8848

부산광역시 동구 중앙대로 240 현대해상 부산사옥 5층

TEL 051-464-8847 FAX 051-462-3360 수리센터 직통번호 TEL 042-936-1283